A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation. | LitMetric

Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation.

Biochem Biophys Res Commun

Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan. Electronic address:

Published: September 2018

The intracellular molecular transport system is a basic and general cellular mechanism that is regulated by an array of signaling molecules. Sar1 small GTPases are molecules that play a key role in controlling vehicle transport between the endoplasmic reticulum (ER) and Golgi bodies. Like other small GTPases, the activities of Sar1a depend on their guanine-nucleotide-binding states, which are regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the well-known function of mammalian Sar1 in the intracellular transport system, little is known about when and how Sar1 is activated during cell morphological changes. Here we show that the C-terminal, but not the N-terminal, regions of Sec23A and Sec23B, the effector proteins of Sar1a, specifically bind to the active, GTP-bound form of Sar1a. An affinity precipitation (pull-down) assay using a recombinant C-terminal region of Sec23B reveals that Sar1a is activated following differentiation in neuronal cell lines. In neuronal N1E-115 cells, GTP-bound Sar1a is increased when cells elongate neuronal processes. Similar results are observed in morphological differentiation in oligodendroglial FBD-102b cells. Additionally, prolactin regulatory element binding (PREB), the GEF for Sar1 (Sar1 activator), increases the binding ability to the nucleotide-free form of Sar1a when morphological differentiation occurs. Nucleotide-free small GTPases preferentially interact with the cognate, active GEFs. These results provide evidence that using previously unreported pull down assays reveals that Sar1 and PREB are upregulated following the induction of morphological differentiation, suggesting the potential role of signaling through Sar1a during morphological differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.07.157DOI Listing

Publication Analysis

Top Keywords

morphological differentiation
20
form sar1a
12
small gtpases
12
gtp-bound form
8
sar1a
8
transport system
8
sar1a morphological
8
morphological
6
differentiation
6
sar1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!