The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337728 | PMC |
http://dx.doi.org/10.1016/j.chembiol.2018.07.005 | DOI Listing |
Mol Cell Proteomics
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco.
Glycosylation is the most common and diverse modification of proteins. It can affect protein function and stability and is associated with many diseases. While proteomic methods to study most post-translational modifications are now quite mature, glycopeptide analysis is still a challenge, particularly from the aspect of data analysis.
View Article and Find Full Text PDFAnal Methods
January 2025
Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
Ribonucleic acid (RNA), essential for protein production and immune function, undergoes glycosylation, a process that attaches glycans to RNA, generating unique glycoRNAs. These glycan-coated RNA molecules regulate immune responses and may be related to immune disorders. However, studying them is challenging due to RNA's fragility.
View Article and Find Full Text PDFViruses
December 2024
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden.
The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand.
The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
The CHO VRC01 cell line produces an anti-HIV IgG1 monoclonal antibody containing N-linked glycans on both the Fab (variable) and Fc (constant) regions. Site-specific glycan analysis was used to measure the complex effects of cell culture process conditions on Fab and Fc glycosylation. Experimental data revealed major differences in glycan fractions across the two sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!