Severity: 8192
Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated
Filename: helpers/my_audit_helper.php
Line Number: 8900
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8900
Function: str_replace
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3362
Function: formatAIDetailSummary
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
SET-domain-containing 2 (SETD2), a member of the histone lysine methyltransferase family, has been reported to be involved in multiple biological processes. However, the function of SETD2 during oocyte maturation has not been addressed. In this study, we find that mouse oocytes are incapable of progressing through meiosis completely once SETD2 is specifically depleted. These oocytes present an abnormal spindle morphology and deficient chromosome movement, with disrupted kinetochore-microtubule attachments, consequently producing aneuploidy eggs. In line with this, the BubR1 signal is markedly elevated in metaphase kinetochores of oocytes with SETD2 depletion, indicative of the activation of spindle assembly checkpoint. In addition, we note that loss of SETD2 results in a drastic decrease in the trimethylation level of H3K36 in oocytes. Collectively, our data demonstrate that SETD2 is required for oocyte maturation and indicate a novel mechanism controlling the meiotic apparatus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.26836 | DOI Listing |
Mol Syst Biol
December 2024
Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, 69366, France.
Biological mechanisms related to cancer development can leave distinct molecular fingerprints in tumours. By leveraging multi-omics and epidemiological information, we can unveil relationships between carcinogenesis processes that would otherwise remain hidden. Our integrative analysis of DNA methylome, transcriptome, and somatic mutation profiles of kidney tumours linked ageing, epithelial-mesenchymal transition (EMT), and xenobiotic metabolism to kidney carcinogenesis.
View Article and Find Full Text PDFMod Pathol
November 2024
Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan.
Mol Biol Cell
April 2024
Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
Proper formation of the hippocampus is crucial for the brain to execute memory and learning functions. However, many questions remain regarding how pyramidal neurons (PNs) of the hippocampus mature and precisely position. Here we revealed that , the methyltransferase for histone 3 lysine 36 trimethylation (H3K36me3), is essential for the precise localization and maturation of PNs in the hippocampal CA1.
View Article and Find Full Text PDFPathol Res Pract
February 2024
Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy. Electronic address:
Background: Identifying biomarkers for metastatic renal cell carcinoma (mRCC) is an unmet need in actual immunotherapy era. Available data regarding chromosome 3p genes (i.e.
View Article and Find Full Text PDFbioRxiv
September 2023
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Histone methyltransferases play essential roles in the organization and function of chromatin. They are also frequently mutated in human diseases including cancer. One such often mutated methyltransferase, SETD2, associates co-transcriptionally with RNA polymerase II and catalyzes histone H3 lysine 36 trimethylation (H3K36me3) - a modification that contributes to gene transcription, splicing, and DNA repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!