Accuracy of auxiliary density functional theory hybrid calculations for activation and reaction enthalpies of pericyclic reactions.

J Mol Model

Departamento de Química, CINVESTAV, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, A.P. 14-740, 07000, México D.F, Mexico.

Published: August 2018

Auxiliary density functional theory (ADFT) hybrid calculations are based on the variational fitting of the Coulomb and Fock potential and, therefore, are free of four-center electron repulsion integrals. So far, ADFT hybrid calculations have been validated successfully for standard enthalpies of formation. In this work the accuracy of ADFT hybrid calculations for the description of pericyclic reactions was quantitatively validated at the B3LYP/6-31G*/GEN-A2* level of theory. Our comparison with conventional Kohn-Sham density functional theory (DFT) results shows that the DFT and ADFT activation and reaction enthalpies are practically indistinguishable. A systematic study of various functionals (PBE, B3LYP, PBE0, CAMB3LYP, CAMPBE0 and HSE06) and basis sets (6-31G*, DZVP-GGA and aug-cc-pVXZ; X = D, T and Q) revealed that the ADFT HSE06/aug-cc-pVTZ/GEN-A2* level of theory yields best balanced accuracy for the activation and reaction enthalpies of the studied pericyclic reactions. With the successfully validate ADFT composite approach consisting of PBE/DZVP-GGA/GEN-A2* structure and transition state optimizations and single-point HSE06/aug-cc-pVTZ/GEN-A2* energy calculations, an accurate, reliable and efficient computational approach for the study of pericyclic reactions in systems at the nanometer scale is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3759-8DOI Listing

Publication Analysis

Top Keywords

hybrid calculations
16
pericyclic reactions
16
density functional
12
functional theory
12
activation reaction
12
reaction enthalpies
12
adft hybrid
12
auxiliary density
8
level theory
8
adft
6

Similar Publications

Unlabelled: This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation with quantitative computed tomography (QCT) results. The proposed models offer potential for screening patients at a high risk of osteoporosis and reducing unnecessary radiation and costs.

View Article and Find Full Text PDF

sp. nov., a crude oil aggregation-forming anaerobic bacterium isolated from marine sediment.

Int J Syst Evol Microbiol

January 2025

Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.

A crude oil aggregation-forming, strictly anaerobic, Gram-stain-positive, spore-forming, rod-shaped, motile and mesophilic bacterium, named strain SH18-2, was isolated from marine sediment near Sado Island in the Sea of Japan. The temperature, salinity and pH ranges of this strain for the growth were 15-40 °C (optimum 35 °C), 0.5-6.

View Article and Find Full Text PDF

Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.

View Article and Find Full Text PDF

Reliable computational methodologies and basis sets for modeling x-ray spectra are essential for extracting and interpreting electronic and structural information from experimental x-ray spectra. In particular, the trade-off between numerical accuracy and computational cost due to the size of the basis set is a major challenge, since molecular orbitals undergo extreme relaxation in the core-hole state. To gain clarity on the changes in electronic structure induced by the formation of a core-hole, the use of sufficiently flexible basis for expanding the orbitals, particularly for the core region, has been shown to be essential.

View Article and Find Full Text PDF

Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!