Tributyltin (TBT), an antifouling agent found in boat paints, is a common contaminant of marine and freshwater ecosystems. It is rapidly absorbed by organic materials and accumulated in many aquatic animals. Human exposure may depend on ingestion of contaminated food or by indirect exposure from household items containing organotin compounds. TBT is defined as an endocrine disruptor compound (EDC) because it binds to androgen receptors. Moreover, it is also included on the list of metabolic disruptors. The brain is a known target of TBT and this compound interferes with the orexigenic system, inducing a strong decrease in NPY expression in the hypothalamus. In the present experiment, we investigated the effect of a chronic treatment with TBT on the mouse anorexigenic system in both sexes, to look at the pro-opiomelanocortin (POMC) expression in the paraventricular (PVN), dorsomedial (DMN), ventromedial (VMN), and arcuate (ARC) hypothalamic nuclei. The results show a sexually dimorphic effect of TBT on both systems. TBT induced a significant decrease of POMC-positive structures only in female mice in DMN, ARC, and in PVN for both sexes. Apparently, these results show that TBT may interfere with the anorexigenic system in hypothalamic areas involved in the control of food intake, by inhibiting POMC in a sexually dimorphic way. In conclusion, in addition to having a direct effect on fat tissue, the effects of TBT as metabolic disruptor, may be due to gender-specific actions on both orexigenic and anorexigenic hypothalamic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-018-2896-9DOI Listing

Publication Analysis

Top Keywords

sexually dimorphic
12
chronic treatment
8
tbt
8
anorexigenic system
8
treatment tributyltin
4
tributyltin induces
4
induces sexually
4
dimorphic alterations
4
hypothalamic
4
alterations hypothalamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!