Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aims: Intracellular Ca2+ signaling plays an important role in the regulation of autophagy. However, very little is known about the role of Ca2+ influx, which is induced by plasma membrane Ca2+ channels. Our previous study showed that transient receptor potential canonical channel-6 (TRPC6), a major Ca2+ influx pathway in podocytes, was activated by hypoxia. Here, we investigated whether TRPC6 is involved in hypoxia-induced autophagy in cultured human podocytes.
Methods: In the present study, an immortalized human podocyte cell line was used. Fluo-3 fluorescence was utilized to determine intracellular Ca2+ concentration ([Ca2+]i), and western blotting was used to measure autophagy and protein expression.
Results: We found that blockade TRPC6 by using either TRPC6 siRNA or a TRPC6 blocker attenuated hypoxia-induced autophagy, while enhancement of TRPC6 activity with a TRPC6 activator enhanced hypoxia-induced autophagy. Furthermore, TRPC6-dependent Ca2+ signaling is responsible for hypoxia-induced autophagy since both an intracellular and extracellular Ca2+ chelator abolished hypoxia-induced autophagy. Moreover, we found that blockade of TRPC6 by using either TRPC6 siRNA or a TRPC6 blocker decreased the expression of adenosine monophosphate-activated protein kinase (AMPK), an important signaling molecule in Ca2+-dependent autophagy activation, which is activated under hypoxic conditions. These data suggest that the involvement of TRPC6 in hypoxia-induced autophagy is associated with AMPK signaling.
Conclusion: TRPC6 is essential for hypoxia-induced autophagy in podocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000492351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!