Classical long short-term memory neural network (LSTMNN) generally faces the challenges of poor generalization property and low training efficiency in state degradation trend prediction of rotating machinery. In this paper, a novel quantum neural network called quantum weighted long short-term memory neural network (QWLSTMNN) is proposed. First, quantum bits are introduced into the long short-term memory unit to express network weights and activity values. Then, a new learning algorithm based on quantum phase-shift gate and quantum gradient descent is presented to quickly update the quantum parameters of weight qubits and activity qubits. The above characteristics endow QWLSTMNN with better nonlinear approximation capability, higher generalization property and faster convergence speed than LSTMNN. State degradation trend prediction for rolling bearings demonstrates that higher prediction accuracy and higher computational efficiency can be obtained due to the advantages of QWLSTMNN in terms of nonlinear approximation capability, generalization property and convergence speed. It is believed that the proposed method based on QWLSTMNN is effective for state degradation trend prediction of rotating machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2018.07.004DOI Listing

Publication Analysis

Top Keywords

long short-term
16
short-term memory
16
neural network
16
state degradation
16
degradation trend
16
trend prediction
16
memory neural
12
prediction rotating
12
rotating machinery
12
generalization property
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!