A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlation of Dynamic O-(2-[F]Fluoroethyl)-L-Tyrosine Positron Emission Tomography, Conventional Magnetic Resonance Imaging, and Whole-Brain Histopathology in a Pretreated Glioblastoma: A Postmortem Study. | LitMetric

Objective: Amino acid positron emission tomography (PET) using O-(2-[F]fluoroethyl)-L-tyrosine (FET) provides important additional information on the extent of viable tumor tissue of glioblastoma compared with magnetic resonance imaging (MRI). Especially after radiochemotherapy, progression of contrast enhancement in MRI is equivocal and may represent either tumor progression or treatment-related changes. Here, the first case comparing postmortem whole-brain histology of a patient with pretreated glioblastoma with dynamic in vivo FET PET and MRI is presented.

Methods: A 61-year-old patient with glioblastoma initially underwent partial tumor resection and died 11 weeks after completion of chemoradiation with concurrent temozolomide. Three days before the patient died, a follow-up FET PET and MRI scan indicated tumor progression. Autopsy was performed 48 hours after death. After formalin fixation, a 7-cm bihemispherical segment of the brain containing the entire tumor mass was cut into 3500 consecutive 20μm coronal sections. Representative sections were stained with hematoxylin and eosin stain, cresyl violet, and glial fibrillary acidic protein immunohistochemistry. An experienced neuropathologist identified areas of dense and diffuse neoplastic infiltration, astrogliosis, and necrosis. In vivo FET PET, MRI datasets, and postmortem histology were co-registered and compared by 3 experienced physicians.

Results: Increased uptake of FET in the area of equivocal contrast enhancement on MRI correlated very well with dense infiltration by vital tumor cells and showed tracer kinetics typical for malignant gliomas. An area of predominantly reactive astrogliosis showed only moderate uptake of FET and tracer kinetics usually observed in benign lesions.

Conclusions: This case report impressively documents the correct imaging of a progressive glioblastoma by FET PET.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2018.07.232DOI Listing

Publication Analysis

Top Keywords

fet pet
16
pet mri
12
positron emission
8
emission tomography
8
magnetic resonance
8
resonance imaging
8
pretreated glioblastoma
8
contrast enhancement
8
enhancement mri
8
tumor progression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!