Posidonia oceanica meadows are facing global threats mainly due to episodic heat waves. In a mesocosm experiment, we aimed at disentangling the molecular response of P. oceanica under increasing temperature (20 °C-32 °C). The experiment was carried out in spring, when heat waves can potentially occur and plants are putatively more sensitive to heat stress, since they are deprived in carbohydrates reserves after the cold winter months. We aimed to identify the activation of different phases of the cellular stress response (CSR) reaction and the responsive genes activated or repressed in heated plants. A molecular traffic light was proposed as a response model including green (protein folding and membrane protection), yellow (ubiquitination and proteolysis) and red (DNA repair and apoptosis) categories. Additionally, we estimated phenological trait variations to complement the information obtained from the molecular proxies of stress. Despite reduced leaf growth rate, heated plants did not exhibit signs of irreversible damage, probably underlying species pre-adaptation to warm and fluctuating regimes. Gene expression analyses revealed that molecular chaperoning, DNA repair and apoptosis inhibition processes related genes were the ones that mostly responded to high thermal stress and will be target of further investigation and in situ proofing for assessing their use as indicators of P. oceanica performance under sub-lethal heat stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2018.07.007 | DOI Listing |
Background: Irisin is an exercise-induced myokine that elicits beneficial effects of exercise in fat, bone, and the brain. Previous work suggests that extracellular heat shock protein 90a (Hsp90a) mediates irisin-receptor interaction in bone and fat. Despite this, it remains unclear if Hsp90a is necessary for irisin signaling in the brain.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFAdv Rheumatol
January 2025
Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).
View Article and Find Full Text PDFVirol J
January 2025
Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!