Prostate cancer incidence increases with age; along with many other cancers, it could be considered a disease of aging. Prostate cancer screening has led to a significant proportion of men diagnosed with low-grade, low-stage prostate cancer who are now more likely to choose an active surveillance strategy rather than definitive treatments. Definitive treatment, such as surgery and radiation therapy, is useful for high-grade disease; however, because of the low long-term risk of progression of a low-grade disease and side effects of surgery and radiation, these treatments are less commonly used for low-grade disease. While five alpha reductase inhibitors have been shown to reduce the risk of cancer detection on subsequent biopsies for men on active surveillance, no medications have been proven to prevent progression to high-grade disease. mTOR pathways have long been known to influence prostate cancer and are targets in various prostate cancer patient populations. Low-dose mTOR inhibition with rapamycin has shown promise in pre-clinical models of prostate cancer and appear to affect cellular senescence and immunomodulation in the aging population. We hypothesize that low-dose mTOR inhibition could reduce progression of low-grade prostate cancer patients, allowing them to remain on active surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902872 | PMC |
http://dx.doi.org/10.1016/j.mehy.2018.06.004 | DOI Listing |
Medicine (Baltimore)
January 2025
Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, US.
Background: Most cancer survivors have multiple cardiovascular risk factors, increasing their risk of poor cardiovascular and cancer outcomes. The Automated Heart-Health Assessment (AH-HA) tool is a novel electronic health record clinical decision support tool based on the American Heart Association's Life's Simple 7 cardiovascular health (CVH) metrics to promote CVH assessment and discussion in outpatient oncology. Before proceeding to future implementation trials, it is critical to establish the acceptability of the tool among providers and survivors.
View Article and Find Full Text PDFAm J Health Promot
January 2025
College of Social Work, University of South Carolina, Columbia, SC, USA.
Purpose: Artificially Intelligent (AI) chatbots have the potential to produce information to support shared prostate cancer (PrCA) decision-making. Therefore, our purpose was to evaluate and compare the accuracy, completeness, readability, and credibility of responses from standard and advanced versions of popular chatbots: ChatGPT-3.5, ChatGPT-4.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.
Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.
View Article and Find Full Text PDFProstate
January 2025
Department of Urology, Weill Cornell Medicine, New York City, New York, USA.
Purpose: Actinium-225 labeled prostate-specific membrane antigen (PSMA) targeted radionuclide therapy has emerged as a potential treatment option in the management of men with metastatic castrate-resistant prostate cancer (mCRPC). This study investigated molecular imaging-derived parameters and compared imaging response of lesions categorized by tumor site.
Methods: Men with mCRPC treated with [225Ac]Ac-J591 from 2017 to 2022 at our center on two prospective trials (NCT03276572 and NCT04506567) with pre- and post-treatment [68Ga]Ga-PSMA-11 Positron Emission Tomography (PET) imaging studies available were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!