The Integrated Fixed-Film Activated Sludge (IFAS) process is an advanced biological wastewater treatment process that integrates biofilm carriers within conventional activated sludge to uncouple the sludge retention time for nitrifiers and heterotrophic bacteria. In this study, we incorporated microalgae into the IFAS configuration for photo-oxygenation and evaluated the symbiotic reaction between microalgae and bacteria for both suspended solids and IFAS biofilm media. In a sequencing batch mode, the microalgae-IFAS system removed more than 99% ammonia and 51% phosphorous without the need for mechanical aeration. Biofilm microprofiles revealed localized photo-oxygenation by the algal biofilm and nitrification by nitrifiers on the IFAS media. Genetic sequencing showed that the addition of microalgae to the IFAS system promoted significant changes in the bacterial community structure and altered metabolic activity of several bacterial groups. Overall, this research represents a novel strategy for reducing energy consumption while meeting stringent effluent standards using a hybrid symbiotic microalgae-IFAS technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734556PMC
http://dx.doi.org/10.1016/j.biortech.2018.07.123DOI Listing

Publication Analysis

Top Keywords

activated sludge
12
microalgae ifas
8
ifas
5
multiscale investigation
4
investigation symbiotic
4
symbiotic microalgal-integrated
4
microalgal-integrated fixed
4
fixed film
4
film activated
4
sludge
4

Similar Publications

Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.

View Article and Find Full Text PDF

Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors.

iScience

December 2024

Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, P.R. China.

Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.

View Article and Find Full Text PDF

Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems.

View Article and Find Full Text PDF

Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water.

Water Res

December 2024

Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:

As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.

View Article and Find Full Text PDF

The use of activated sludge models (ASMs) is a common way in the field of wastewater engineering in terms of plant design, development, optimization, and testing of stand-alone treatment plants. The focus of this study was the development of a joint control system (JCS) for a municipal wastewater treatment plant (mWWTP) and an upstream industrial wastewater treatment plant (iWWTP) to create synergies for saving aeration energy. Therefore, an ASM3 + BioP model of the mWWTP was developed to test different scenarios and to find the best set-points for the novel JCS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!