Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine disrupting chemical with relatively high concentrations in agricultural soils of China. Here, a rhizobox experiment was conducted to investigate the variations in microbial community and DEHP dissipation among different soil rhizospheric compartments between low (Fengyousimiao) and high (Peizataifeng) DEHP-accumulating cultivars of rice (Oryza sativa L.) grown in DEHP spiked soil (0, 20, 100 mg/kg). The dissipation rates of DEHP in rhizospheric soils of Peizataifeng were generally significantly higher than those of Fengyousimiao, with the highest removal rate in 0-2 mm rhizosphere. The results of Illumina-HiSeq high-throughput sequencing revealed that both bacterial and fungal diversity and community structure were significantly different in rhizospheric soils of the two cultivars. DEHP dissipation rates in 0-2 mm rhizosphere of Peizataifeng were positively correlated with bacterial and fungal diversity. The relative abundance of DEHP-degrading bacterial genera Acinetobacter, Pseudomonas and Bacillus of Peizataifeng was generally higher than those in the same rhizospheric compartment of Fengyousimiao in DEHP treatments, resulting in different rhizospheric DEHP dissipation. Cultivation of Peizataifeng in agricultural soil is promising to facilitate DEHP dissipation and ensure safety of agricultural products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.07.097 | DOI Listing |
Sci Rep
August 2024
Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand.
While extensive research has explored the effects of plastic pollution, ecosystem responses remain poorly quantified, especially in field experiments. In this study, we investigated the impact of polyester pollution, a prevalent plastic type, on coastal sediment ecosystem function. Strips of polyester netting were buried into intertidal sediments, and effects on sediment oxygen consumption and polyester additive concentrations were monitored over 72-days.
View Article and Find Full Text PDFJ Hazard Mater
June 2023
Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:
Chemosphere
February 2023
Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China. Electronic address:
The dissipation, uptake, translocation and accumulation of phthalic acid esters (PAEs) including diallyl phthalate (DAP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP) and di-(2-ethylhexyl) phthalate (DEHP) in sediment-Zizania latifolia system were investigated by gas chromatography-flame ionization detector after a QuEChERS pretreatment method. The dissipation rates of PAEs in sediment were positively correlated with exposure time, and more than 68.12% of PAEs in sediment were decreased after 28 d even when the spiked contents were extremely high.
View Article and Find Full Text PDFJ Hazard Mater
February 2023
Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Environ Pollut
December 2022
School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China. Electronic address:
The coexistence of di (2-ethylhexyl) phthalate (DEHP), Cd, and Zn poses a serious challenge to soil ecosystems. This study aimed to evaluate the phytoremediation potential of rice assisted with a plant growth promoting rhizobacteria (PGPR) consortium for the remediation of DEHP, Cd, and Zn co-contaminated soil. The consortium consisted of four bacterial strains, all of which exhibited Cd-Zn resistance and DEHP degradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!