Taste receptors (TRs) are seven trans-membrane G protein-coupled receptors as well as the interface between internal and external milieus, which playing pivotal roles in nutrient identification and acquisition. To better understand the scope and function of tr gene family in common carp, one of the most economic and important breeding fish species, which has undergone an additional round of whole genome duplication (WGD), we characterized 13 tr gene homologues including eight type I and five type II taste receptor genes from common carp genome, which were more than any other teleosts. Phylogenetic and syntenic analysis revealed the evolution dynamics of tr gene family, which was highly conserved, though gene duplication and gene loss do exist recently. Furthermore, the motif and dN/dS analyses indicated that these receptors were under different negative selection pressure. Additionally, the gene expression divergences were observed in 12 health tissues of common carp, with a relatively high level in barbel and head kidney, demonstrating tissue-specific expression of tr genes in the tetraploidized genome. The overarching goals of this study were to identify the abundance of tr genes in common carp, compare the gene divergence among species with varied feeding habits and provide genomic resources for future studies on teleost taste sensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2018.07.078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!