Electroencephalogram (EEG) has evolved to be a well-established tool for imaging brain activity. This progress is mainly due to the development of high-resolution (HR) EEG methods. One class of HR-EEG is the cortical potential imaging (CPI), which aims to estimate the potential distribution on the cortical surface, which is much more informative than EEG. Even though these methods exhibit good performance, most of them have inherent inaccuracies that originate from their operating principles that constrain the solution or require a complex calculation process. The back-projection CPI (BP-CPI) method is relatively new and has the advantage of being constraint-free and computation inexpensive. The method has shown relatively good accuracy, which is necessary to become a clinical tool. However, better performance must be achieved. In the present study, two improvements are proposed. Both are embedded as adjacent stages to the BP-CPI and are based on the multi-resolution optimization approach (MR-CPI). A series of Monte-Carlo simulations were performed to examine the characteristics of the proposed improvements. Additional tests were done, including different EEG noise levels and variation in electrode-numbers. The results showed highly accurate cortical potential estimations, with a reduction in estimation error by a factor of 3.75 relative to the simple BP-CPI estimation error. We also validated these results with true EEG data. Analyzing these EEGs, we have demonstrated the MR-CPI competence to correctly localize cortical activations in a real environment. The MR-CPI methods were shown to be reliable for estimating cortical potentials, enabling researchers to obtain fast and robust high-resolution EEGs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10548-018-0668-1DOI Listing

Publication Analysis

Top Keywords

cortical potential
12
potential imaging
8
multi-resolution optimization
8
eeg methods
8
estimation error
8
cortical
6
eeg
5
improved back-projection
4
back-projection cortical
4
potential
4

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Vulvar lichen planus a retrospective analysis.

Arch Dermatol Res

January 2025

Department of Dermatology and Venereal Diseases, Dr. Lütfi Kırdar City Hospital, Istanbul, Turkey.

Vulvar lichen planus (VLP) is a rare mucocutaneous disorder with significant impacts on quality of life and a potential risk of malignancy. Comprehensive data on its clinical features and treatment outcomes remain limited. To analyze the demographic and clinical characteristics of patients diagnosed with VLP and to evaluate the efficacy of current therapeutic approaches.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!