Fractured systems are ubiquitous in natural and engineered applications as diverse as hydraulic fracturing, underground nuclear test detection, corrosive damage in materials and brittle failure of metals and ceramics. Microstructural information (fracture size, orientation, etc.) plays a key role in governing the dominant physics for these systems but can only be known statistically. Current models either ignore or idealize microscale information at these larger scales because we lack a framework that efficiently utilizes it in its entirety to predict macroscale behavior in brittle materials. We propose a method that integrates computational physics, machine learning and graph theory to make a paradigm shift from computationally intensive high-fidelity models to coarse-scale graphs without loss of critical structural information. We exploit the underlying discrete structure of fracture networks in systems considering flow through fractures and fracture propagation. We demonstrate that compact graph representations require significantly fewer degrees of freedom (dof) to capture micro-fracture information and further accelerate these models with Machine Learning. Our method has been shown to improve accuracy of predictions with up to four orders of magnitude speedup.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076234PMC
http://dx.doi.org/10.1038/s41598-018-30117-1DOI Listing

Publication Analysis

Top Keywords

machine learning
12
fractured systems
8
graph theory
8
quantifying topological
4
topological uncertainty
4
uncertainty fractured
4
systems
4
systems graph
4
theory machine
4
learning fractured
4

Similar Publications

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.

View Article and Find Full Text PDF

A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.

Biomark Res

January 2025

Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.

Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.

Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Immunomodulatory insights of monoterpene glycosides in endometriosis: immune infiltration and target pathways analysis.

Hereditas

January 2025

Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.

Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!