Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and systems development is focused on cost reduction to open up future economic opportunities for food, fuel and freshwater production. Light is a key environmental driver for photosynthesis and optimising light capture is therefore critical for low cost, high efficiency systems. Here a novel high-throughput screen that simulates fluctuating light regimes in mass cultures is presented. The data was used to model photosynthetic efficiency (PE, mol photon m) and chlorophyll fluorescence of two green algae, Chlamydomonas reinhardtii and Chlorella sp. Response surface methodology defined the effect of three key variables: density factor (D, 'culture density'), cycle time (t, 'mixing rate'), and maximum incident irradiance (I). Both species exhibited a large rise in PE with decreasing I and a minimal effect of t (between 3-20 s). However, the optimal D of 0.4 for Chlamydomonas and 0.8 for Chlorella suggested strong preferences for dilute and dense cultures respectively. Chlorella had a two-fold higher optimised PE than Chlamydomonas, despite its higher light sensitivity. These results demonstrate species-specific light preferences within the green algae clade. Our high-throughput screen enables rapid strain selection and process optimisation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076246 | PMC |
http://dx.doi.org/10.1038/s41598-018-29954-x | DOI Listing |
Plant Biotechnol J
December 2024
Department of Plant Sciences, University of Cambridge, Cambridge, UK.
The green microalga Chlamydomonas reinhardtii is a promising host organism for the production of valuable compounds. Engineering the Chlamydomonas chloroplast genome offers several advantages over the nuclear genome, including targeted gene insertion, lack of silencing mechanisms, potentially higher protein production due to multiple genome copies and natural substrate abundance for metabolic engineering. Tuneable expression systems can be used to minimize competition between heterologous production and host cell viability.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.
The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Marine Laboratory, Duke University, Beaufort, North Carolina, USA.
The microalga is an important organism for algae-based biocommodity production of food, feed, and fuel, among other products. Using PacBio Revio, we sequenced, assembled, and annotated a 26.41 Mbp C018 genome.
View Article and Find Full Text PDFCurr Microbiol
December 2024
B.S.Abdur Rahman Crescent Institute of Science & Technology, Chennai, Tamil Nadu, 600048, India.
Lichen-associated endophytic Actinobacteria, particularly Streptomyces species, are recognized for their production of bioactive secondary metabolites with significant pharmaceutical potential. With the escalating prevalence of diseases, Streptomyces species are being investigated for its natural source of antimicrobial compounds for new antibiotics. This study focuses on the bioactive properties of secondary metabolites from lichen-associated endophytic Actinobacteria, focusing on Streptomyces glaucescens NTSB-37 isolated form lichen, Parmotrema perlatum (Huds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!