Geometric and Mechanical Bone Response to a Multidisciplinary Weight Loss Intervention in Adolescents With Obesity: The ADIBOX Study.

J Clin Densitom

Université Clermont Auvergne, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France; Faculty of Health, Australian Catholic University, Melbourne, VIC, Australia; CRNH Auvergne, Clermont-Ferrand, France.

Published: July 2021

AI Article Synopsis

Article Abstract

The effectiveness of structured multidisciplinary weight loss (WL) programs combining nutrition and physical activity on bone geometry and strength remains uncertain in adolescents with obesity. The study investigated the impact of a structured WL intervention on bone geometry and strength in adolescents with obesity. Thirty-one adolescents with obesity (mean [standard deviation] 13.61 [1.27] yr, body mass index Z-score 2.26 [0.30]) experienced an 8-mo WL program. A group of 23 maturation-matched controls (mean [standard deviation] 15.90 [0.43] yr, body mass index Z-score -0.12 [0.48]) were recruited for calculating Z-scores. Body composition, bone density, geometry, and mechanical properties were assessed using dual-energy X-ray absorptiometry and dual-energy X-ray absorptiometry-derived hip structural analysis. Plasma concentration of leptin, estradiol, collagen type 1 cross-linked C-telopeptide (CTx), and procollagen type 1 N-terminal propeptide were measured. Longitudinal analysis showed that adolescents with obesity reduced body weight and fat mass (total [g, %; p < 0.007]). After 8 mo, body mineral density at total body less head (Δ 3.22 [3.58] % p < 0.001) and lumbar spine (Δ 3.67 [4.04] % p < 0.001) increased. At the narrow neck (NN) of the femur, lower body mineral density (Δ -7.19 [8.79] % p < 0.001) and higher endocortical diameter and width were observed (NN endocortical diameter Δ 2.85 [0.26] %, NN width Δ 5.48 [10.84] %, respectively). An increased buckling ratio (Δ 8.24 [2.00] % p = 0.005) was also evident. Similar concentration of procollagen type 1 N-terminal propeptide and CTx was seen from baseline to 8 mo. However, at 4 mo, lower CTx levels were observed. The 8-mo WL program was associated with some positive adaptations among bone density parameters for the whole body and spine. However, bone geometry and strength estimates appeared to weaken at the NN. Clinically, the buckling ratio score at the NN was close to the fracture threshold. An "androgynous-like" adaptation was observed with bone geometry changes demonstrating periosteal expansion and endocortical resorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jocd.2018.06.002DOI Listing

Publication Analysis

Top Keywords

adolescents obesity
20
bone geometry
16
geometry strength
12
multidisciplinary weight
8
weight loss
8
[standard deviation]
8
body
8
body mass
8
mass z-score
8
8-mo program
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!