Background: The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABA-ρ1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABA-ρ1R.
Results: In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABA-ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. "In silico" modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols.
Conclusions: The sulfur-containing compounds structurally related to taurine are partial agonists of GABA-ρ1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076408 | PMC |
http://dx.doi.org/10.1186/s12868-018-0448-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!