Microvesicles shed from pulmonary cells are capable of transferring inflammatory cargo to recipient cells nearby or in distant to enhance inflammation. Some authors believe that cofilin controls actin dynamics and regulates vesicle mobilization. We therefore investigated the potential role and mechanism of microvesicles in ventilator-induced lung injury (VILI). Fifty male C57BL/6 mice were orotracheally intubated and either allowed to breathe spontaneously or they were mechanically ventilated with different tidal volumes (Vt) and ventilation times. Lung tissue injury was assessed in terms of lung histopathologic examination, wet/dry weight ratios, and levels of total proteins and of cytokines. Microvesicle characteristics, sizes, contents and levels as well as cofilin were also measured. We found that lung inflammation increased significantly after ventilation with high Vt for 4 h; these conditions led to secretion of larger and more microvesicles into the alveoli than animals with/without ventilation at low Vt. Intratracheal instillation of microvesicles obtained from animals ventilated with low or high Vt triggered significant lung inflammation in naive mice, and these high-Vt microvesicles not only carried more IL-1β and TNF-α but also induced more severe lung inflammation compared to low-Vt microvesicles; And high-Vt microvesicles at 2 h carried more molecular cargo than that at 1 h or 4 h, which may involve the shift and amplification of inflammation. Furthermore, blocking the phosphorylation of cofilin can not only inhibit microvesicle formation in the lung, but also reduce lung injury. Collectively, our data suggest that microvesicles packaging IL-1β and TNF-α enhance lung inflammation in VILI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2018.07.034DOI Listing

Publication Analysis

Top Keywords

lung inflammation
16
il-1β tnf-α
12
lung
10
microvesicles
9
microvesicles packaging
8
packaging il-1β
8
tnf-α enhance
8
enhance lung
8
lung injury
8
high-vt microvesicles
8

Similar Publications

Background: With increasing adoption of remote clinical trials in digital mental health, identifying cost-effective and time-efficient recruitment methodologies is crucial for the success of such trials. Evidence on whether web-based recruitment methods are more effective than traditional methods such as newspapers, media, or flyers is inconsistent. Here we present insights from our experience recruiting tertiary education students for a digital mental health artificial intelligence-driven adaptive trial-Vibe Up.

View Article and Find Full Text PDF

Health system resilience is defined as the ability of a system to prepare, manage, and learn from shocks. This study investigates the resilience of the German health system by analysing the system-related factors that supported health care workers, a key building block of the system, during the COVID-19 pandemic. We thematically analysed data from 18 semi-structured interviews with key informants from management, policy and academia, 17 in-depth interviews with health care workers, and 10 focus group discussions with health care workers.

View Article and Find Full Text PDF

Previous studies have highlighted the inherent subjectivity, complexity, and challenges associated with research quality leading to fragmented findings. We identified determinants of research publication quality in terms of research activities and the use of information and communication technologies by employing an interdisciplinary approach. We conducted web-based surveys among academic scientists and applied machine learning techniques to model behaviors during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Introduction: Patients with cerebral hemorrhage often require a tracheal intubation to protect the airway and maintain oxygenation. Due to the use of analgesic and sedative drugs during endotracheal intubation and the opening of the glottis may easily cause aspiration pneumonia. Ceftriaxone is a semi-synthetic third-generation cephalosporin with strong antimicrobial activity against most gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Background: Randomised trials conducted from 2006 to 2021 indicated that vitamin D supplementation (VDS) was able to prevent severe COVID-19 and acute respiratory infections (ARI). However, larger randomised trials published in 2022 did not confirm the health benefits of VDS in COVID-19 patients.

Objective: To examine through a systematic review with meta-analysis the characteristics of randomised trials on VDS to COVID-19 patients and admission to intensive care unit (ICU), and of randomised trials on VDS for the prevention of ARI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!