Colony-stimulating factor-1 receptor provides a growth advantage in epithelial cancer cell line A431 in the presence of epidermal growth factor receptor inhibitor gefitinib.

Cell Signal

Institut fuer Zellbiochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany. Electronic address:

Published: November 2018

Although epidermal growth factor receptor (EGFR) has been identified as a potent "oncogenic driver" in various tumors of epithelial origin, EGFR-targeted therapies are often of limited success. One of the challenges of improving targeted therapies is to overcome bypassing signaling pathways. Analysis of RNA-seq data of 1006 cell lines from the Cancer Cell Line Encyclopedia (CCLE) revealed that more than 12% of carcinoma cell lines expressed markedly elevated mRNA levels of colony-stimulating factor (CSF)-1 receptor (CSF-1R). Since epithelial cells also express CSF-1, elevated levels of CSF-1R may participate in providing alternative growth and survival signals under targeted therapies. To address this question, we ectopically expressed CSF-1R in A431 cells that express EGFR at high levels, but no biologically relevant level of CSF-1R. In the presence of EGFR inhibitor gefitinib, CSF-1R provided a significant growth advantage in A431 cells. As expected, activation of both receptors, EGFR or CSF-1R, induced phosphorylation of extracellular signal-regulated kinase (Erk)1/2, Akt, protein kinase C (PKC) and signal transducer and activator of transcription (STAT)3. However, EGFR, but not CSF-1R, also induced STAT5 phosphorylation. Inhibitor of phosphatidylinositol 3-kinase (PI3K) (AZD8186), MAPK/ERK kinase (MEK)1/2 (U0126), PKCs (Bisindolylmaleimide I or Gö6976) or STAT3 (Stattic) partially reduced proliferation of CSF-1R expressing A431 cells in the presence of gefitinib. Moreover, multi-kinase inhibitor, cabozantinib, suppressed CSF-1R activation and drastically reduced cell growth when combined with gefitinib. These data suggest that CSF-1R has the potential to reduce sensitivity to gefitinib and may be involved in resistance development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2018.07.014DOI Listing

Publication Analysis

Top Keywords

a431 cells
12
csf-1r
10
growth advantage
8
cancer cell
8
epidermal growth
8
growth factor
8
factor receptor
8
inhibitor gefitinib
8
targeted therapies
8
cell lines
8

Similar Publications

Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.

View Article and Find Full Text PDF

Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.

View Article and Find Full Text PDF

Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.

View Article and Find Full Text PDF

Smart Polymeric 3D Microscaffolds Hosting Spheroids for Neuronal Research via Quantum Metrology.

Adv Healthc Mater

January 2025

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.

Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!