AI Article Synopsis

  • Hepatitis poses a severe risk during Coxsackievirus B3 (CVB3) infection, especially in newborns, and type I interferon (IFN-I) is crucial for protection against it.
  • Researchers discovered that hepatocytes, the liver's main cells, are significant producers of IFN-β during CVB3 infection, while liver-resident macrophages play a minor role.
  • The study emphasizes that activation of the IFN-I receptor (IFNAR) in hepatocytes is essential for preventing virus spread and ensuring survival, suggesting a similar mechanism might exist in humans.

Article Abstract

During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-β reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-β responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107283PMC
http://dx.doi.org/10.1371/journal.ppat.1007235DOI Listing

Publication Analysis

Top Keywords

cvb3 infection
32
cvb3
10
type interferon
8
hepatocytes
8
virus dissemination
8
infection
8
cvb3 infected
8
reporter mice
8
murine human
8
infection hepatocytes
8

Similar Publications

Background: Myocarditis is an inflammation of the heart muscle most often caused by viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood.

Methods: Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control.

View Article and Find Full Text PDF

Unlabelled: Coxsackievirus B3 (CVB3) is a non-enveloped picornavirus that can cause systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that following infection, CVB3 localizes to mitochondria, inducing mitochondrial fission and mitophagy, while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This results in the release of virus-laden mitophagosomes from the host cell as infectious extracellular vesicles (EVs) which allow non-lytic viral egress.

View Article and Find Full Text PDF

Unlabelled: Viral aseptic meningitis is a neuroinflammatory condition that occurs when viruses gain access to the central nervous system (CNS) and induce inflammation. The blood-brain barrier (BBB) is comprised of brain endothelial cells (BECs) that stringently regulate the passage of molecules, toxins, and pathogens from the circulation into the CNS. Through their unique properties, such as complex tight junctions, reduced rates of endocytosis, expression of efflux transporters, and restricted expression of leukocyte adhesion molecules, the BBB is often able to limit pathogen entry into the brain; however, certain neurotropic pathogens, such as coxsackievirus B3 (CVB3) are able to infect the CNS.

View Article and Find Full Text PDF

The development of pancreatic cancer requires both, acquisition of an oncogenic mutation in KRAS as well as an inflammatory insult. However, the physiological causes for pancreatic inflammation are less defined. We show here that oncogenic KRas-expressing pre-neoplastic lesion cells upregulate coxsackievirus (CVB) and adenovirus receptor (CAR).

View Article and Find Full Text PDF

Background: Viral myocarditis (VMC) plays a significant role in heart failure, and there is currently a shortage of available targeted treatments. Macrophage phenotype and function are closely associated with the beta-2 adrenergic receptor (β2-AR).

Method: This research employed a BALB/c mouse model of VMC generated using Coxsackievirus B3 (CVB3), and the β2-AR agonist formoterol was administered as treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!