AI Article Synopsis

  • The analysis of celestial spectra reveals important astrophysical information about celestial bodies, including their physical attributes, chemical makeup, and atmospheric conditions.
  • Large surveys like LAMOST and SDSS generate extensive spectral data, necessitating advanced processing techniques to classify massive amounts of stellar spectra efficiently.
  • This paper explores the use of Bayes' theorem alongside Lick indices to categorize stellar spectra into three types (F, G, K) and leverages Hadoop for parallel computation, enhancing processing speed and efficiency.

Article Abstract

Celestial spectrum contains a great deal of astrophysical information. Through the analysis of spectra, people can get the physical information of celestial bodies, as well as their chemical composition and atmospheric parameters. With the implementation of LAMOST, SDSS telescopes and other large-scale surveys, massive spectral data will be produced, especially along with the formal operation of LAMOST, 2 000 to 4 000 spectral data will be generated each observation night. It requires more efficient processing technology to cope with such massive spectra. Automatic classification of stellar spectra is a basic content of spectral processing. The main purpose of this paper is to research the automatic classification of massive stellar spectra. The Lick index is a set of standard indices defined in astronomical spectra to describe the spectral intensity of spectral lines, which represent the physical characteristics of spectra. Lick index is a relatively wide spectral characteristics, each line index is named after the most prominent absorption line. In this paper, the Bayesian method is used to classify stellar spectra based on Lick line index, which divides stellar spectra to three subtypes: F, G, K. First of all, Lick line index of spectra is calculated as the characteristic vector of spectra, and then Bayesian method is used to classify these spectra. For massive spectra, the computation of Lick indices and the spectral classification using Bayesian decision method are implemented on Hadoop. With use of the high throughput and good fault tolerance of HDFS, combined with the advantages of MapReduce parallel programming model, the efficiency of analysis and processing for massive spectral data have been improved significantly. The main innovative contributions of this thesis are as follows. (1) Using Lick indices as the characteristic to classify stellar spectra based on Bayesian decision method. (2) Implementing parallel computation of Lick indices and parallel classification of stellar spectra using Bayesian based on Hadoop MapReduce distributed computing framework.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stellar spectra
24
spectra
14
spectral data
12
lick indices
12
spectral
9
spectral classification
8
massive spectral
8
data will
8
massive spectra
8
automatic classification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!