Synthesis, Crystal Structure, and Optical Properties of Noncentrosymmetric NaZnSnS.

Inorg Chem

State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China.

Published: August 2018

A new chalcogenide NaZnSnS has been successfully synthesized by using NaS as reactive flux. NaZnSnS crystallizes in the tetragonal system with space group of I4̅. Its cell parameters are a = 6.4835(6) Å and c = 9.134(1) Å. The structure is a derivative of AgGaS, in which the Ag ions are replaced by Na ions and the Ga ions are replaced by Zn and Sn ions. All three cations are in seriously distorted tetrahedral geometry with a distortion factor (η = c/ a) of 1.4. Optical measurements show that the NaZnSnS powder sample has a large transparent range from 0.8 to 25 μm and a wide band gap of 3.1 eV. It exhibits large second-harmonic generation intensity of 0.9 × AgGaS in the grain size range from 41 to 74 μm. First-principles calculation results reveal that the valence band maximum and conduction band minimum are mainly composed of S 3p, Zn 3d orbitals and Sn 5s, S 3p orbitals, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b01025DOI Listing

Publication Analysis

Top Keywords

ions replaced
8
replaced ions
8
range μm
8
synthesis crystal
4
crystal structure
4
structure optical
4
optical properties
4
properties noncentrosymmetric
4
naznsns
4
noncentrosymmetric naznsns
4

Similar Publications

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Beyond Inducing Anionic Redox: Controllable Migration Sequence of Li Ions in Transition Metal Layers Toward Highly Stable Li-Rich Cathodes.

Adv Mater

January 2025

Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.

The energy density of layered oxides of Li-ion batteries can be enhanced by inducing oxygen redox through replacing transition metal (TM) ions with Li ions in the TM layer. Undesirably, the cathodes always suffer from unfavorable structural degradation, which is closely associated with irreversible TM migration and slab gliding, resulting in continuous capacity and voltage decay. Herein, attention is paid to the Li ions in the TM layer (Li) and find their extra effects beyond inducing oxygen redox, which has been rarely mentioned.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!