In order to find out the optimum combination of the evaluation parameters for the selection of the best drug near infrared (NIR) universal quantitative model during model optimization, 13 common evaluation parameters of NIR quantitative models were collected and arranged from commercial chemometrics software or References based on the requirements of validation of quantitative analytical procedures of ICH (International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use). Then all these parameters of 92 drug NIR universal quantitative models were calculated and analyzed. By studying the correlation of these parameters, the optimum combination of evaluation parameters for drug NIR universal quantitative models was determined. And the value range of these parameters in the optimum combination was also obtained. Root mean square error of cross-validation(RMSECV)/root mean square error of prediction (RMSEP), average relative deviation (ARD) and ratio of (standard error of) prediction (validation) to (standard) deviation (RPD) were used as the key parameters to evaluate the model accuracy. Most of RMSECV/RMSEP was within 3%, and the value of RMSECV was roughly equivalent to the average absolute deviation of the corresponding model. Most of RPD was more than 2. The value of ARD was related to the type of universal models (such as the drug preparation and packing) and the content range which the test sample belonged to. Determination coefficient (R2) was used as the key parameter to evaluate the model linearity and most of its values were from 80% to 100%. The ratio of RMSEP to RMSECV was selected as the key evaluation parameter of model robustness and its value was usually within 1.5. The standard deviation of repeated measurement data was chosen to evaluate model precision. And it was an important parameter for standardizing operation of NIR instruments and studying the feasibility of model transfer in different instruments. However, the parameter for NIR universal quantitative models received much less attention in previous studies and it was difficult to give a value range for this parameter at present. All the results can not only provide evidence for evaluation of drug NIR universal quantitative models for the model builders or users, but also supply basic data to establish and improve the parameter evaluation system of drug NIR universal quantitative models.
Download full-text PDF |
Source |
---|
Food Res Int
November 2024
College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China; The National Key Laboratory of Agricultural Equipment Technology, Beijing 100083, PR China. Electronic address:
Nondestructive online detection and sorting for fruit quality has gradually attracted attention in the global agro-product industry. However, the detection accuracy is influenced by many factors, such as fruit orientation, fruit shape, and environmental fluctuations. This study aimed to explore the impact of measurement orientation variation on spectra and soluble solids content (SSC) detection in apples and propose a correction method to mitigate the effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea.
Rational and effective design of a universal near-infrared (NIR) light-absorbed platform employed to prepare diverse activatable NIR fluorogenic probes for in vivo imaging and the imaging-guided tumor resection remains less exploited but highly meaningful. Herein, mandelic acid with a core structure of 4-hydroxylbenzyl alcohol to link recognition unit, a fluorophore and a quencher was employed to prepare activatable probes. We exemplified ester as carboxylesterase (CE)-recognized unit, ferrocene as quencher and phenothiazinium as NIR fluorophore to afford fluorogenic probes termed NBS-Fe-CE and NBS-C-Fe-CE.
View Article and Find Full Text PDFAdv Mater
November 2024
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Organic photothermal materials have attracted extensive attention due to their designable molecular structure, tunable excited-state properties, and excellent biocompatibility, however, the development of near-infrared II (NIR-II) absorbing organic photothermal materials with high photothermal conversion efficiency (PTCE) and molar extinction coefficient (ɛ) remains challenging. Herein, a novel "electron-donor iteration" strategy is proposed to construct organic photothermal dendrimers (CR-DPA-T, CR-(DPA)-T and CR-(DPA)-T) with donor-π-acceptor-π-donor (D-π-A-π-D) features and diradical characteristics. Owing to the enhanced D-A effect and intramolecular motions, their absorption and photothermal capacity increase as the generation grows.
View Article and Find Full Text PDFACS Sens
October 2024
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical nanosensors, including single-walled carbon nanotubes (SWCNTs), provide real-time spatiotemporal reporting at the single-molecule level within a nanometer-scale area. However, their superior sensitivity also makes them susceptible to slight environmental influences such as reference analytes in media, external fluid flow, and mechanical modulations. Consequently, they often fail to achieve the optimal limit of detection (LOD) and frequently convey misinformation spatiotemporally.
View Article and Find Full Text PDFJ Control Release
November 2024
Department of Radiology, University of Michigan, Ann Arbor, 48109, MI, USA. Electronic address:
Organic nanocrystals, particularly those composed of conjugated molecules, hold immense potential for various applications. However, their practical utility is often hindered by the challenge of achieving stable aqueous dispersions, which are essential for biological compatibility and effective delivery. This study introduces a novel and versatile strategy for preparing stable aqueous organic nanocrystals using a modified reprecipitation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!