Background: The trisynaptic circuit (entorhinal cortex-dentate gyrus-CA3-CA1) is a key unidirectional network in the hippocampus. Damage to the hippocampus interrupts this circuit and causes neurological disorders. Efficient delivery of therapeutic genes into this network is of great interest with respect to treating trisynaptic circuit pathologies.
Methods: We generated a lentivector system pseudotyped by a variant of rabies glycoprotein, FUG-B2. The efficiency of the vector in the retrograde transduction of the rat hippocampal neurons (i.e. the entorhinal cortex from the dentate gyrus, the dentate gyrus from CA3, and CA3 from CA1) was examined by direct injection of the vector into the dentate gyrus, CA3 and CA1. To distinguish transduction of the neuronal and glial cells, as well as selective retrograde gene transfer, double-staining of the green fluorescent protein (GFP) expressing cells with the specific neuron biomarker NeuN (neuronal nuclear protein) and the specific glia biomarker GFAP (glial fibrillary acidic protein) was performed across the network.
Results: The transgene was successfully introduced into the circuit. More than 80% of the neuronal and glial cells at the injection sites preserved GFP expression during the 2-month period after vector injection. Importantly, GFP was expressed selectively in almost 80.0% of the presynaptic neuronal cells by retrograde axonal transport of the vector.
Conclusions: The FUG-B2-based vector system can efficiently introduce the transgene into the rat hippocampal neurons both directly and indirectly through retrograde monosynaptic movement. This efficient and long-lasting gene delivery might provide a tool for treating neurological disorders originating in hippocampal circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jgm.3046 | DOI Listing |
Hippocampus
January 2025
Department of Neuroscience, Science Commons, University of Lethbridge, Lethbridge, Canada.
Evidence from neurophysiological and genetic studies demonstrates that activity sparsity-the proportion of neurons that are active at a given time in a population-systematically varies across the canonical trisynaptic circuit of the hippocampus. Recent work has also shown that sparsity varies across the hippocampal dorsoventral (long) axis, wherein activity is sparser in ventral than dorsal regions. While the hippocampus has a critical role in long-term memory (LTM), whether sparsity across the trisynaptic circuit and hippocampal long axis is task-dependent or invariant remains unknown.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
Glucocorticoids are known to influence hippocampal function, but their rapid non-genomic effects on specific neurons in the hippocampal trisynaptic circuit remain underexplored. This study investigated the immediate effects of glucocorticoids on CA1 and CA3 pyramidal neurons, and dentate gyrus (DG) granule neurons in rats using the patch-clamp technique. We found that a 5 min extracellular application of corticosterone significantly reduced action potential firing frequency in CA1 pyramidal neurons, while no effects were observed in CA3 or DG neurons.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Shandong Key Laboratory of Mental Disorders and Intelligent Control, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
J Neurosci
January 2025
Departments of Anatomy & Neurobiology, University of California-Irvine, Irvine, California 92697
The hippocampus is the most studied brain region, but little is known about signal throughput-the simplest, yet most essential of circuit operations-across its multiple stages from perforant path input to CA1 output. Using hippocampal slices derived from male mice, we have found that single-pulse lateral perforant path (LPP) stimulation produces a two-part CA1 response generated by LPP projections to CA3 ("direct path") and the dentate gyrus ("indirect path"). The latter, indirect path was far more potent in driving CA1 but did so only after a lengthy delay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!