Alternative Oxidase Promotes Biofilm Formation of Candida albicans.

Curr Med Sci

Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Published: June 2018

This study was designed to analyze the effect of the mitochondrial respiratory pathways of Candida albicans (C. albicans) on the biofilm formation. The 2, 3-bis (2-methoxy- 4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay was used to measure the metabolic activities of biofilms formed by the C. albicans which were cultured in the presence of respiratory pathways inhibitors. The biofilms formed by the wide type (WT), GOA7-deleted (GOA31), GOAV-reconstituted (GOA32), AOXla-deleted (AOX1) and AOXlb-deleted (AOX2) C. albicans strains were examined by the XTT reduction assay and fluorescence microscopy. The expression of adhesion-related genes BCR1, ALS1, ALS3, ECE1 and HWP1 in the biofilms formed by the above five C. albicans strains was detected by real time polymerase chain reaction. It was found that the metabolic activity of biofilms formed by C. albicans was decreased in the presence of alternative oxidase inhibitor whereas it was increased in the presence of classical mitochondrial respiratory pathway complex HI or complex IV inhibitor. AOX1 strain produced scarce biofilms interspersed with few hyphal filaments. Moreover, no significant changes in the expression of BCR1 and ALS3 were observed in the AOX1 strain, but the expression of ALSI and ECE1 was down-regulated, and that of HWP1 was up-regulated. These results indicate that both AOX1 and AOX2 can promote the biofilm formation. However, AOXla primarily plays a regulatory role in biofilm formation in the absence of inducers where the promoting effect is mainly achieved by promoting mycelial formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-018-1898-xDOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
biofilms formed
16
formed albicans
12
alternative oxidase
8
candida albicans
8
mitochondrial respiratory
8
respiratory pathways
8
xtt reduction
8
reduction assay
8
albicans strains
8

Similar Publications

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

Skin wound healing is a physiological process orchestrated by epithelial and mesenchymal cells able to restore tissue continuity by re-organizing themselves and the ECM. This research study aimed to develop an optimized in vitro experimental model of full-thickness skin, to address molecular and morphological modifications occurring in the re-epithelization and wound healing process. Wound healing starting events were investigated within an experimental window of 8 days at the molecular level by gene expression and immunofluorescence of key epidermal and dermal biomarkers.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

spp. are facultative pathogens that contribute to the pathogenesis of multiple bovine diseases, including the bovine respiratory disease complex, and have been shown to form biofilms. Biofilm formation is associated with increased antibiotic resistance in many organisms, but accurate determination of antimicrobial susceptibility in biofilms is challenging.

View Article and Find Full Text PDF

Nanoarchitectonics for Advancing Bone Graft Technology: Integration of Silver Nanoparticles Against Bacteria and Fungi.

Microorganisms

December 2024

Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil.

Silver nanoparticles have garnered significant attention for their antimicrobial applications. The aim of this study was to develop and characterize a silver nanoparticle-enhanced bone graft and assess its antimicrobial and antibiofilm activities. Bone granules from bovine cancellous femur were impregnated with silver nanoparticles (50 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!