Preeclampsia (PE) is a pregnancy-specific hypertensive complication, closely related to endothelial dysfunction. Adipose derived stem cells (ADSCs) have the capacity to differentiate into endothelial cells for vascular repair. Therefore, we hypothesized that induced endothelial differentiation of ADSCs might hold great potential for the treatment of PE. In this study, the primary ADSCs and human umbilical vein endothelial cells (HUVECs) were isolated by the collagenase digestion method. The supernatant of HUVECs was collected from the first generation of cells. Then, ADSCs were divided into two groups: ADSCs alone group and induced ADSCs (iADSCs) group. In iADSCs group, ADSCs were induced by HUVECs conditioned medium and ADSCs special culture medium at a ratio of 1:1 over a two-week period. In order to identify the endothelial characteristics of iADSCs, CD31 and CD34 were examined by flow cytometry. The proliferation, migration, invasion and angiogenesis assays were employed to compare the bioactivity of iADSCs and ADSCs. Furthermore, The levels of angiogenic related factors including vascular endothelial growth factor (VEGF) and placenta growth factor (P1GF) were detected by RT-PCR and Western blotting. Results showed conditioned medium from HUVECs promoted ADSCs proliferation, migration, invasion and angiogenesis. In addition, the levels of VEGF and P1GF were significantly enhanced in iADSCs group. This study uncovered the iADSCs application potential in the therapy and intervention of PE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-018-1855-8 | DOI Listing |
Int J Mol Sci
January 2025
Facultad de Diseño, Universidad del Desarrollo, Avenida Plaza 680, Las Condes 7610658, Santiago, Chile.
This study aims to provide evidence that when testing cellulose paper modified with copper particles (CuPs), the particle size and the analysis method influence the antimicrobial activity observed by this material. Commercial CuPs of nanometric size (2.7 nm, CuNPs) and micrometric size (2.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
Hair graying is one of the common visible signs of human aging, resulting from decreased or abolished melanogenesis due to the depletion of melanocyte stem cells through excess accumulation of oxidative stress. Cell-free therapy using a conditioned medium (CM) of mesenchymal stem cells has been highlighted in the field of regenerative medicine owing to its potent therapeutic effects with lower regulatory hurdles and safety risk. Recently, we demonstrated that a CM of an immortalized stem cell line from human exfoliated deciduous teeth (SHED) has protective effects against a mouse model of ulcer formation via antioxidative and angiogenic activities mediated by HGF and VEGF.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan. Electronic address:
Objectives: Systemic administration of conditioned medium (CM) from stem cells derived from human exfoliated deciduous teeth (SHED-CM) in mouse models of rheumatoid arthritis, osteoporosis, and osteoarthritis suppresses excessive osteoclast activity and restores bone integrity. However, the mechanism through which SHED-CM regulates osteoclastogenesis remains largely unknown. In the present study, we examined the anti-osteoclastogenic mechanism of SHED-CM in vitro.
View Article and Find Full Text PDFJ Anat
January 2025
Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!