Egypt is a transcontinental country containing substantial ethnic, cultural, and linguistic diversity among its people. This study was conducted to investigate the genetic variation at 15 AmpFlSTR Identifiler short tandem repeat (STR) loci, D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, and FGA, within and between seven Egyptian populations. Samples of 814 unrelated individuals from Northern Coast, Delta, Greater Cairo, Canal governorates, Northern Upper Egypt, Southern Upper Egypt, and Sinai were investigated. All loci were highly polymorphic in all sample populations. The data were analyzed to give information on allele frequencies and other population statistical parameters. After applying Bonferroni correction, the agreement with Hardy-Weinberg equilibrium (HWE) was confirmed for all loci (exact test), and for all loci with the exception of D3S1358, D19S433, and D18S51 (X test). The levels of genetic differentiation and the genetic relationships among populations were evaluated by coefficient of genetic differentiation (F), AMOVA, and genetic distance of Nei. The most differentiated populations were found between Sinai and Southern Upper Egypt. These two populations showed the lowest within-population variation, whereas the population of Greater Cairo showed the highest within-population variation as indicated by the fixation index F. The varying levels of genetic relatedness among the populations in relation to their geographical distribution were analyzed using Mantel test. The results demonstrated that the effectiveness of STR markers enhances their value for identifying the genetic variation within and between Egyptian populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-018-9879-0DOI Listing

Publication Analysis

Top Keywords

genetic variation
12
egyptian populations
12
upper egypt
12
genetic
8
str loci
8
populations
8
greater cairo
8
southern upper
8
levels genetic
8
genetic differentiation
8

Similar Publications

Genetic diversity within a tree and alternative indexes for different evolutionary effects.

Quant Plant Biol

December 2024

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.

View Article and Find Full Text PDF

To analyze whether the single-nucleotide polymorphisms (SNPs) in Matrix metalloproteinases 2, 3, and 9 (MMP2, MMP3, and MMP9), Tissue Inhibitor of Metalloproteinases 1 and 2 (TIMP1 and TIMP2), methionine synthase (MTR) and methionine synthase reductase (MTRR) influence delayed deciduous tooth eruption (DDTE). This cross-sectional study included 1060 biologic unrelated children (aged between 6 and 36 months) of both sexes, selected from 25 public schools in Nova Friburgo, Rio de Janeiro, Brazil. Oral examination was conducted and DDTE was defined by the absence of gingival eruption according to a chronology based on the Brazilian population.

View Article and Find Full Text PDF

A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA.

Mol Ecol Resour

January 2025

Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain.

Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles.

View Article and Find Full Text PDF

Two dwarf bunt resistance QTLs were mapped to chromosome 6D, and KASP markers associated with the loci were developed and validated in a panel of regionally adapted winter wheats. UI Silver is an invaluable adapted resistant cultivar possessing the two identified QTL potentially associated with genes Bt9 and Bt10 and will be useful in future cultivar development to improve dwarf bunt resistance. Dwarf bunt, caused by Tilletia controversa, is a fungal disease of wheat that can cause complete loss of grain yield and quality during epidemics.

View Article and Find Full Text PDF

Telomere-to-telomere genome and resequencing of 254 individuals reveal evolution, genomic footprints in Asian icefish, Protosalanx chinensis.

Gigascience

January 2025

Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

The Asian icefish, Protosalanx chinensis, has undergone extensive colonization in various waters across China for decades due to its ecological and physiological significance as well as its economic importance in the fishery resource. Here, we decoded a telomere-to-telomere (T2T) genome for P. chinensis combining PacBio HiFi long reads and ultra-long ONT (nanopore) reads and Hi-C data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!