Background: Walking and bicycling are health-promoting and environmentally friendly alternatives to the automobile. Previous studies that explore correlates of active travel and the built environment are for a single metropolitan statistical area (MSA) and results often vary among MSAs.
Objectives: Our goal was to model the relationship between the built environment and active travel for 20 MSAs spanning the continental United States.
Methods: We sourced and processed pedestrian and bicycle traffic counts for 20 U.S. MSAs (=4,593 count locations), with 1–17 y of data available for each count location and the earliest and latest years of data collection being 1999 and 2016, respectively. Then, we tabulated land use, transport, and sociodemographic variables at 12 buffer sizes (100–3,000 m) for each count location. We employed stepwise linear regression to develop predictive models for morning and afternoon peak-period bicycle and pedestrian traffic volumes.
Results: Built environment features were significant predictors of active travel across all models. Areas with easy access to water and green space, high concentration of jobs, and high rates of active commuting were associated with higher bicycle and pedestrian volumes. Bicycle facilities (e.g., bike lanes, shared lane markings, off-street trails) were correlated with higher bicycle volumes. All models demonstrated reasonable goodness-of-fit for both bicyclists (adj-: 0.46–0.61) and pedestrians (adj-: 0.42–0.72). Cross-validation results showed that the afternoon peak-period models were more reliable than morning models.
Conclusions: To our knowledge, this is the first study to model multi-city trends in bicycling and walking traffic volumes with the goal of developing generalized estimates of the impact of the built environment on active travel. Our models could be used for exposure assessment (e.g., crashes, air pollution) to inform design of health-promoting cities. https://doi.org/10.1289/EHP3389.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108845 | PMC |
http://dx.doi.org/10.1289/EHP3389 | DOI Listing |
BMC Med Inform Decis Mak
January 2025
QUEST Center for Responsible Research, Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany.
Background: Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care unit (ICU) patients through scoring systems. Although promising, such algorithms often overfit their training cohort and perform worse at new hospitals. Thus, external validation is a critical - but frequently overlooked - step to establish the reliability of predicted risk scores to translate them into clinical practice.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland.
The Sun drives Earth's energy systems, influencing weather, ocean currents, and agricultural productivity. Understanding solar variability is critical, but direct observations are limited to 400 years of sunspot records. To extend this timeline, cosmic ray-produced radionuclides like C in tree-rings provide invaluable insights.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Archaeology, University of Oxford, Oxford OX1 4PG, United Kingdom.
Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.
Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
The SARS-CoV-2 virus caused the COVID-19 pandemic and brought major challenges to public health. It is transmitted via aerosols, droplets, and fomites. Among these, viral transmission through fomites is not well understood although it remains a very important transmission route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!