MRI in predicting conversion to multiple sclerosis within 1 year.

Brain Behav

Neuroimmunology Unit, Department of Neurology, Rambam Health Care Campus, Haifa, Israel.

Published: September 2018

Objectives: Most patients diagnosed with multiple sclerosis (MS) present with a clinically isolated syndrome (CIS). We aimed to verify previously reported imaging and clinical findings, and to identify new MRI findings that might serve as prognostic factors for a second clinical episode or a change in the MRI scan during the first year following a CIS.

Materials And Methods: We identified from our medical records, 46 individuals who presented with an episode of CIS, which was followed clinically and with imaging studies. A neuroradiologist blinded to the clinical data reviewed the images and recorded the number of lesions, lesion location, and the largest longitudinal diameter of the lesion.

Results: One year after the first MRI, 25 (54%) patients had progressed to MS. The clinical presentation of those who were and were not diagnosed with MS was predominantly motor or sensory deficit. Patients with lesions that were temporal, occipital, or perpendicular to the corpus callosum at the first episode were more likely to have recurrence. Individuals with a combination of more than 13 lesions, with maximal lesion length greater than 0.75 cm, and a lesion perpendicular to the corpus callosum, had a 19 times higher chance of conversion MS during the following year.

Conclusions: Assessment of the number of lesions, lesion location, and maximal lesion size can predict the risk to develop another clinical episode or a new lesion/new enhancement in MRI during the year after CIS. For patients with a higher risk of recurrence, we recommend closer follow-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160649PMC
http://dx.doi.org/10.1002/brb3.1042DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
8
clinical episode
8
number lesions
8
lesions lesion
8
lesion location
8
perpendicular corpus
8
corpus callosum
8
maximal lesion
8
mri
5
clinical
5

Similar Publications

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

Introduction: Upper limb (UL) impairment is common in people with multiple sclerosis (pwMS), and functional recovery of the UL is a key rehabilitation goal. Technology-based approaches, like virtual reality (VR), are increasingly promising. While most VR environments are task-oriented, our clinical approach integrates neuroproprioceptive 'facilitation and inhibition' (NFI) principles.

View Article and Find Full Text PDF

FAST: Fast, free, consistent, and unsupervised oligodendrocyte segmentation and tracking system.

eNeuro

January 2025

Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.

To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images.

View Article and Find Full Text PDF

Deep learning MRI models for the differential diagnosis of tumefactive demyelination versus -wildtype glioblastoma.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (GMC, MM, YN, BJE), Department of Quantitative Health Sciences (PAD, MLK, JEEP), Department of Neurology (CBM, JAS, MWR, FSG, HKP, DHL, WOT), Department of Neurosurgery (TCB), Department of Laboratory Medicine and Pathology (RBJ), and Center for Multiple Sclerosis and Autoimmune Neurology (WOT), Mayo Clinic, Rochester, MN, USA; Dell Medical School (MFE), University of Texas, Austin, TX, USA.

Background And Purpose: Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and non-tumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality.

View Article and Find Full Text PDF

Background: Patients with multiple sclerosis (MS) experience difficulties in understanding speech in noise despite having normal hearing.

Aim: This study aimed to determine the relationship between speech discrimination in noise (SDN) and medial olivocochlear reflex levels and to compare MS patients with a control group.

Material And Methods: Sixty participants with normal hearing, comprising 30 MS patients and 30 healthy controls, were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!