A protocol for the asymmetric synthesis of highly substituted chiral allenes with control of point and axial chirality has been developed. A palladium-catalyzed [3+2] cycloaddition using readily available racemic allenes gives access to densely functionalized chiral allenes with excellent yields and functional group tolerance. The catalytic asymmetric protocol utilizes a broad range of allenyl TMM (trimethylenemethane) donors to form cyclopentanes, pyrrolidines, and spirocycles with very good control of regio-, enantio-, and diastereoselectivity. The chiral allene moiety is shown to be a valuable functional group for rapid elaboration towards complex targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201808345 | DOI Listing |
J Am Chem Soc
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
Herein, we report a method for enantioselective vinylogous addition of enones to alkoxyallenes enabled by synergistic borane/palladium catalysis. The inductive effect provided by borane coordination to the ketone was essential for closing the gap between the conditions needed for the generation of a dienolate and those needed for initiation of the palladium catalytic cycle by protonation of the metal catalyst. Furthermore, we accomplished the first example of stereodivergent synthesis with chiral borane/transition-metal catalysts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shanghai Institute of Organic Chemistry, State Key Lab of Organometallic Chemistry, 345 Lingling Road, 200032, Shanghai, CHINA.
A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86% yield, >98:2 chemo- and regioselectivity, >98:2 dr and >99.5:0.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.
View Article and Find Full Text PDFFerrocenyl amines as directing groups for C-H activation have limitations as they are prone to undergo oxidation, allylic deamination, and β-hydride elimination. The fundamental challenge observed here is the competition between the desired C-H activation the vulnerable β-C-H bond activation of amines and fine-tuning of a suitable oxidant which avoids the oxidation of the β-C-H bond and ferrocene. Herein, the potential of an axially chiral NOBINAc ligand is revealed to implement the enantioselective Pd-catalyzed C-H activation process of ferrocenyl amines.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
CINBIO and Departamento de Química Orgánica, Campus Lagoas-Marcosende, Universidade de Vigo, Vigo, E-36310, Spain.
Chiral allenes self-assembly following a cooperative mechanism into a supramolecular chiral aggregate consisting of two coaxial helices: the internal helix described by the allene stack and the external helix which consist in a 4-helix described by the four allene substituents. More precisely, this supramolecular aggregate possesses six axially chiral elements within its structure-the allene, the allene stack (internal helix) and the stacks of the four allene substituents (external 4-helix)-. Interestingly, slight variations in the magnitude of the tilting degree while keeping its P- or M- orientation (internal helix) can vary the orientation of the 4-axial motifs at the external helix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!