Obesity is a serious global health issue; however, the roles of genetics and epigenetics in the onset and progression of obesity are still not completely understood. The aim of this study was to determine the role of Kdm4b, which belongs to a subfamily of histone demethylases, in adipogenesis and fat metabolism in vivo. We established conditional Kdm4b knockout mice. Inactivation of Kdm4b in adipocytes (K4bKO) induced profound obesity in mice on a high fat diet (HFD). The HFD-fed K4bKO mice exhibited an increased volume of fat mass and higher expression levels of adipogenesis-related genes. In contrast, the genes involved in energy expenditure and mitochondrial functions were down-regulated. Supporting these findings, the energy expenditure of Kdm4b-deficient cells was markedly decreased. In addition, progression of glucose intolerance and hepatic steatosis with hepatocellular damages was observed. These data indicate that Kdm4b is a critical regulator of systemic metabolism via enhancing energy expenditure in adipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.12627DOI Listing

Publication Analysis

Top Keywords

energy expenditure
12
jmjd2b/kdm4b inactivation
4
inactivation adipose
4
adipose tissues
4
tissues accelerates
4
obesity
4
accelerates obesity
4
obesity systemic
4
systemic metabolic
4
metabolic abnormalities
4

Similar Publications

Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Metabolic and bariatric surgery (MBS) is a suitable solution for the treatment of morbid obesity. Investigating an MBS method that has the best outcomes has always been the main concern of physicians. The current study aimed to compare nutritional, anthropometric, and psychological complications of individuals undergoing various MBS Techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!