Groundwater Pumping Is a Significant Unrecognized Contributor to Global Anthropogenic Element Cycles.

Ground Water

Department of Geology, Union College, Schenectady, New York, NY.

Published: May 2019

Quantifying anthropogenic contributions to elemental cycles provides useful information regarding the flow of elements important to industrial and agricultural development and is key to understanding the environmental impacts of human activity. In particular, when anthropogenic fluxes reach levels large enough to influence an element's overall cycle the risk of adverse environmental impacts rises. While intensive groundwater pumping has been observed to affect a wide-range of environmental processes, the role of intensive groundwater extraction on global anthropogenic element cycles has not yet been characterized. Relying on comprehensive datasets of groundwater and produced water (groundwater pumped during oil/gas extraction) chemistry from the U.S. Geological Survey along with estimates of global groundwater usage, I estimate elemental fluxes from global pumping, consumptive use, and depletion of groundwater. I find that groundwater fluxes appreciably contribute to a number of elements overall cycles and thus these cycles were underestimated in prior studies, which did not recognize groundwater pumping's role. I also estimate elemental loadings to agricultural soils in the United States and find that in some regions, groundwater may provide a significant portion (more than 10%) of crop requirements of key nutrients (K, N). With nearly 40% of globally irrigated land under groundwater irrigation, characterizing nutrient and toxic element fluxes to these soils, which ultimately influence crop yields, is important to our understanding of agricultural production. Thus, this study improves our basic understanding of anthropogenic elemental cycles and demonstrates that quantification of groundwater pumping elemental fluxes provides valuable information about the potential for environmental impacts from groundwater pumping.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.12817DOI Listing

Publication Analysis

Top Keywords

groundwater pumping
16
groundwater
13
environmental impacts
12
global anthropogenic
8
anthropogenic element
8
element cycles
8
elemental cycles
8
intensive groundwater
8
estimate elemental
8
elemental fluxes
8

Similar Publications

Optimal allocation and application of water resources based on real water saving in a region with intensive human activity.

J Environ Manage

January 2025

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, PR China. Electronic address:

As water demand continues to grow, water resource management that only restricts water withdrawal can no longer ensure sustainable water use, especially in region with intensive human activities. In the water cycle of precipitation, runoff and evapotranspiration at the basin scale, only water evapotranspiration is the actual consumption of water. Water resource management that aims to control the total consumption within a basin is referred to as "real water saving," which can prevent the depletion of water resources.

View Article and Find Full Text PDF

In this study, a linked simulation optimization (SO) model is presented for identification of groundwater contaminant sources. The SO model consists of two steps namely, simulation and optimization. The simulation step entails developing a groundwater contaminant transport model in which the advection-dispersion-reaction equation (ADRE) is solved for predicting the concentration of the contaminant.

View Article and Find Full Text PDF

With the growing emphasis on environmental protection, many coal mines in northern China were closed. However, the cessation of pumping operations in those closed mines has caused a rise in groundwater levels, giving rise to various safety and environmental concerns. Understanding the patterns of water level recovery is vital for effectively managing abandoned mine sites and ensuring the uninterrupted production of adjacent coal mines.

View Article and Find Full Text PDF

Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications.

View Article and Find Full Text PDF

Source protection zone delineation has evolved over the past decades from fixed radius or analytical and numerical methods which do not consider uncertainty, to more complex stochastic numerical approaches. In this paper we explore options for delineating a source protection zone, while considering the inherent uncertainty involved in characterizing hydraulic conductivity. We consider a representative pumping well in an unconfined alluvial aquifer under steady-state flow conditions, with the hydraulic conductivity distribution inferred from borehole lithology data in the West Melton area near Christchurch, New Zealand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!