Loss of miR-146b-3p Inhibits Perivascular Adipocyte Browning with Cold Exposure During Aging.

Cardiovasc Drugs Ther

State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Published: October 2018

Purpose: Pathological changes of the perivascular adipose tissue (PVAT) are directly associated with increased risk of age-related vascular diseases. MicroRNAs regulate adipocyte biological functions including adipogenic differentiation and white adipocyte browning. The present study aims to determine whether miR-146b-3p is involved in the regulation of perivascular adipocyte browning during aging.

Methods: We utilized a cold-induced animal model to investigate the effect of aging on perivascular adipocyte browning. We also detected the miR-146b-3p expression in the PVAT of young or old mice after cold stimulus. We further investigated the role of miR-146b-3p in regulating perivascular adipocyte browning in vitro and in vivo via administrating miRNA mimics or inhibitors.

Results: Old mice showed decrease of perivascular adipocyte browning and downregulation of miR-146b-3p expression in the PVAT after cold stimulus. Oil red O staining and qPCR indicated that aging perturbed preadipocyte to brown adipocyte differentiation, and expression of miR-146b-3p gradually increased during differentiation. MiR-146b-3p inhibitors blocked brown adipocyte differentiation in young preadipocytes, whereas miR-146b-3p mimics rescued the differentiation of the old preadipocytes. Finally, miR-146b-3p knocks down inhibited perivascular adipocyte browning in young mice after cold stimulus.

Conclusion: Aging inhibits perivascular adipocyte browning, and loss of miR-146b-3p is a potential regulator for this process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10557-018-6814-xDOI Listing

Publication Analysis

Top Keywords

adipocyte browning
32
perivascular adipocyte
28
adipocyte
11
mir-146b-3p
9
loss mir-146b-3p
8
perivascular
8
inhibits perivascular
8
browning
8
mir-146b-3p expression
8
expression pvat
8

Similar Publications

Brown adipocytes are characterized by a high abundance of mitochondria, allowing them to consume fatty acids for heat production. Increasing the number of brown adipocytes is considered a promising strategy for combating obesity. However, the molecular mechanisms underlying their differentiation remain poorly understood.

View Article and Find Full Text PDF

The impact of housing temperature on exercise-induced metabolic adaptations is not well understood, despite extensive research on the benefits of exercise for metabolic health. The aim of this study was to elucidate how housing temperatures influence the molecular responses and metabolic benefits of exercise in mice. Male C57BL/6N mice were housed at either room temperature (RT, 21°C) or in a thermoneutral environment (TN, 29°C) and subjected to either a 6-week or acute exercise regimen.

View Article and Find Full Text PDF

Exposure to perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) was associated with adipogenesis. However, potential mechanisms remain to be elucidated. Herein, a 3T3-L1 adipocyte model was used to explore the dynamic changes in adipocyte differentiation (2, 4, and 8 days) under PFOA and HFPO-DA exposure.

View Article and Find Full Text PDF

Constitutively active receptor ADGRA3 signaling induces adipose thermogenesis.

Elife

December 2024

Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.

The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!