Hunter syndrome is an X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase. The severe form of this progressive, systemic, and neurodegenerative disease results in loss of cognitive skills and early death. Several clinical trials are evaluating adeno-associated virus 9 for the treatment of neurodegenerative diseases using systemic or intrathecal lumbar administration. In large animals, administration via suboccipital puncture gives better brain transduction than lumbar administration. Here, we conducted a good laboratory practice-compliant investigational new drug-enabling study to determine the safety of suboccipital adeno-associated virus 9 gene transfer of human iduronate-2-sulfatase into nonhuman primates. Thirteen rhesus macaques received vehicle or one of two doses of vector with or without immunosuppression. We assessed in-life safety and immune responses. Animals were euthanized 90 days post-administration and sampled for histopathology and biodistribution. The procedure was well tolerated in all animals. Minimal mononuclear cerebrospinal fluid pleocytosis occurred in some animals. Asymptomatic minimal-to-moderate toxicity to some dorsal root ganglia sensory neurons and their associated axons occurred in all vector-treated animals. This study supports the clinical development of suboccipital adeno-associated virus 9 delivery for severe Hunter syndrome and highlights a potential toxicity that warrants monitoring in first-in-human studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070702 | PMC |
http://dx.doi.org/10.1016/j.omtm.2018.06.004 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Federal Research Center for Original and Prospective Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Street, Moscow 125315, Russia.
Adeno-associated viruses (AAVs) are non-pathogenic, replication-deficient viruses that have gained widespread attention for their application as gene therapy vectors. While these vectors offer high transduction efficiency and long-term gene expression, the host immune response poses a significant challenge to their clinical success. This review focuses on the obstacles to evaluating the humoral response to AAVs.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain.
Most rare diseases (RDs) encompass a diverse group of inherited disorders that affect millions of people worldwide. A significant proportion of these diseases are driven by functional haploinsufficiency, which is caused by pathogenic genetic variants. Currently, most treatments for RDs are limited to symptom management, emphasizing the need for therapies that directly address genetic deficiencies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland.
Recombinant Adeno-associated virus (rAAV) is a popular vector for treating genetic diseases caused by absent or defective genes. rAAVs can be produced that contain a therapeutic transgene, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!