A polymer/ionic liquid thermoplastic solid electrolyte based on poly(ethylene oxide) (PEO), modified sepiolite (TPGS-S), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRTFSI) ionic liquid is prepared using solvent free extrusion method. Its physical-chemical, electrical, and electrochemical properties are comprehensively studied. The investigated solid electrolyte demonstrates high ionic conductivity together with excellent compatibility with lithium metal electrode. Finally, truly Li-LiFePO₄ solid state coin cell with the developed thermoplastic solid electrolyte demonstrates promising electrochemical performance during cycling under 0.2 C/0.5 C protocol at 60 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160972 | PMC |
http://dx.doi.org/10.3390/membranes8030055 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 10 mS cm is realized, one to three orders of magnitude higher than traditional liquid or solid lithium-ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF)-ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm, outperforming the bulk counterpart by ≈16 fold.
View Article and Find Full Text PDFHeliyon
December 2024
School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK.
The current study presents a multiphysics numerical model for a micro-planar proton-conducting solid oxide fuel cell (H-SOFC). The numerical model considered an anode-supported H-SOFC with direct internal reforming (DIR) of methane. The model solves coupled nonlinear equations, including continuity, momentum, mass transfer, chemical and electrochemical reactions, and energy equations.
View Article and Find Full Text PDFACS Omega
December 2024
HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary.
Lithium phosphorus oxynitride (LiPON) is a crucial electrolyte for all-solid-state thin-film batteries due to its sufficient ionic conductivity. Understanding the mechanical behavior of LiPON films is crucial for further technological development. Previous studies noted unexpected ductility and strain recovery in amorphous LiPON during sharp-ended tip indentations revealing pile-up formation and densification as the main deformation mechanisms.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT) Chennai, Vandalur - Kelambakkam Road, Chennai 600127, India.
Nickel pyrovanadate (NVO) and compositing rGO in different concentrations with NVO are synthesized via the solvothermal process. XRD patterns reveal the formation of crystalline NVO and amorphous rGO in the nanocomposite. The morphology of the material resembles the formation of an NVO hollow nanosphere through a template-free synthesis route with the effect of ethylene glycol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!