A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Integrated Approach for Identifying Molecular Subtypes in Human Colon Cancer Using Gene Expression Data. | LitMetric

An Integrated Approach for Identifying Molecular Subtypes in Human Colon Cancer Using Gene Expression Data.

Genes (Basel)

State Key Laboratory of Organ Failure Research, Division of Nephrology, Southern Medical University, Guangzhou 510515, China.

Published: August 2018

Identifying molecular subtypes of colorectal cancer (CRC) may allow for more rational, patient-specific treatment. Various studies have identified molecular subtypes for CRC using gene expression data, but they are inconsistent and further research is necessary. From a methodological point of view, a progressive approach is needed to identify molecular subtypes in human colon cancer using gene expression data. We propose an approach to identify the molecular subtypes of colon cancer that integrates denoising by the Bayesian robust principal component analysis (BRPCA) algorithm, hierarchical clustering by the directed bubble hierarchical tree (DBHT) algorithm, and feature gene selection by an improved differential evolution based feature selection method (DEFS) algorithm. In this approach, the normal samples being completely and exclusively clustered into one class is considered to be the standard of reasonable clustering subtypes, and the feature selection pays attention to imbalances of samples among subtypes. With this approach, we identified the molecular subtypes of colon cancer on the mRNA gene expression dataset of 153 colon cancer samples and 19 normal control samples of the Cancer Genome Atlas (TCGA) project. The colon cancer was clustered into 7 subtypes with 44 feature genes. Our approach could identify finer subtypes of colon cancer with fewer feature genes than the other two recent studies and exhibits a generic methodology that might be applied to identify the subtypes of other cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115727PMC
http://dx.doi.org/10.3390/genes9080397DOI Listing

Publication Analysis

Top Keywords

colon cancer
28
molecular subtypes
24
gene expression
16
expression data
12
subtypes colon
12
subtypes
11
cancer
9
identifying molecular
8
subtypes human
8
human colon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!