In this paper, the fatigue crack growth behavior of the base metal (BM), the weld metal (WM) and the heat-affected zone (HAZ) in the metal-inert gas (MIG) welded joints of the 06Cr19Ni10 stainless steel are analyzed and studied. Results of the fatigue crack propagation tests show that a new fatigue crack initiates at the crack tip of a pre-existing crack, then propagates perpendicular to the direction of cyclic fatigue loads. This observation indicates that the original mixed-mode crack transforms into the mode I crack. The WM specimen has the largest fatigue crack growth rate, followed by the HAZ specimen and the BM specimen. To illustrate the differences in fatigue crack growth behavior of the three different types of specimens, metallographic structure, fracture morphology and residual stresses of the BM, HAZ and WM are investigated and discussed. The metallographic observations indicate that the mean grain size of the HAZ is relatively larger than that of the BM. The fractographic analysis shows that the WM has the largest fatigue striation width, followed by the HAZ and the BM. It is also found that the depth of dimple in the WM is relatively shallower than the one in the HAZ and BM, implying the poor plasticity behavior of the material. Analysis results of the residual stress analysis demonstrate a high level of tensile residual stress appearance in the WM and HAZ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119981PMC
http://dx.doi.org/10.3390/ma11081336DOI Listing

Publication Analysis

Top Keywords

fatigue crack
24
crack growth
16
growth behavior
12
crack
9
fatigue
8
mig welded
8
06cr19ni10 stainless
8
stainless steel
8
largest fatigue
8
residual stress
8

Similar Publications

The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.

View Article and Find Full Text PDF

Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy.

Materials (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.

View Article and Find Full Text PDF

Methodology for Hydrogen-Assisted Fatigue Testing Using In Situ Cathodic Charging.

Materials (Basel)

January 2025

Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.

With hydrogen being a promising candidate for many future and current energy applications, there is a need for material-testing solutions, which can represent hydrogen charging under superimposed mechanical loading. Usage of high purity gaseous hydrogen under high pressure in commercial solutions entails huge costs and also potential safety concerns. Therefore, a setup was developed utilizing a customized electrochemical charging cell built into a dynamic testing system.

View Article and Find Full Text PDF

In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve.

View Article and Find Full Text PDF

In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal-mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!