The mitotic spindle is a very dynamic structure that is built and destroyed at each round of cell division. In order to perform its fundamental function during chromosome segregation, mitotic spindle dynamics must be tightly coordinated with other cell cycle events. These changes are driven by several protein kinases, phosphatases and microtubule-associated proteins. In budding yeast, the kinase Swe1 and the phosphatase Mih1 act in concert in controlling the phosphorylation state of Cdc28, the catalytic subunit of Cdk1, the major regulator of the cell cycle. In this study we show that Swe1 and Mih1 are also involved in the control of mitotic spindle dynamics. Our data indicate that Swe1 and the Polo-like kinase Cdc5 control the balance between phosphorylated and unphosphorylated forms of Mih1, which is, in turn, important for mitotic spindle elongation. Moreover, we show that the microtubule-associated protein Bik1 is a phosphoprotein, and that Swe1 and Mih1 are both involved in controlling phosphorylation of Bik1. These results uncover new players and provide insights into the complex regulation of mitotic spindle dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.213520 | DOI Listing |
Life Sci Alliance
April 2025
https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.
View Article and Find Full Text PDFCureus
December 2024
Ophthalmology, All India Institute of Medical Sciences, Madurai, Madurai, IND.
Melanoma is a highly aggressive malignancy originating from melanocytes, characterized by its potential to arise in various anatomic locations, both common and rare. The incidence of melanoma has been steadily increasing globally, with variations in clinical presentation, tumor behavior, and prognosis depending on the anatomical site involved. Understanding the diverse pathological spectrum of melanoma is critical for optimizing diagnostic and therapeutic strategies.
View Article and Find Full Text PDFJ Cell Biol
March 2025
State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
TPX2 is an elongated molecule containing multiple α-helical repeats. It stabilizes microtubules (MTs), promotes MT nucleation, and is essential for spindle assembly. However, the molecular basis of how TPX2 performs these functions remains elusive.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Second Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China.
Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.
View Article and Find Full Text PDFPLoS Genet
January 2025
Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!