Background And Purpose: Synthetic MR imaging is a method that can produce multiple contrasts from a single sequence, as well as quantitative maps. Our aim was to determine the feasibility of a synthetic MR image for spine imaging.
Materials And Methods: Thirty-eight patients with clinical indications of infectious, degenerative, and neoplastic disease underwent an MR imaging of the spine (11 cervical, 8 dorsal, and 19 lumbosacral MR imaging studies). The SyntAc sequence, with an acquisition time of 5 minutes 40 seconds, was added to the usual imaging protocol consisting of conventional sagittal T1 TSE, T2 TSE, and STIR TSE.
Results: Synthetic T1-weighted, T2-weighted, and STIR images were of adequate quality, and the acquisition time was 53% less than with conventional MR imaging. The image quality was rated as "good" for both synthetic and conventional images. Interreader agreement concerning lesion conspicuity was good with a Cohen κ of 0.737. Artifacts consisting of white pixels/spike noise across contrast views, as well as flow artifacts, were more common in the synthetic sequences, particularly in synthetic STIR. There were no statistically significant differences between readers concerning the scores assigned for image quality or lesion conspicuity.
Conclusions: Our study shows that synthetic MR imaging is feasible in spine imaging and produces, in general, good image quality and diagnostic confidence. Furthermore, the non-negligible time savings and the ability to obtain quantitative measurements as well as to generate several contrasts with a single acquisition should promise a bright future for synthetic MR imaging in clinical routine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655273 | PMC |
http://dx.doi.org/10.3174/ajnr.A5728 | DOI Listing |
Adv Healthc Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
Lund University, Department of Translational Medicine, Medical Radiation Physics, Malmö, Sweden.
Purpose: We aim to investigate the characteristics and evaluate the performance of synthetic mammograms (SMs) based on wide-angle digital breast tomosynthesis (DBT) compared with digital mammography (DM).
Approach: Fifty cases with both synthetic and digital mammograms were selected from the Malmö Breast Tomosynthesis Screening Trial. They were categorized into five groups consisting of normal cases and recalled cases with false-positive and true-positive findings from DM and DBT only.
Quant Imaging Med Surg
January 2025
Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands.
Background: Gadolinium-based contrast agents (GBCAs) are usually employed for glioma diagnosis. However, GBCAs raise safety concerns, lead to patient discomfort and increase costs. Parametric maps offer a potential solution by enabling quantification of subtle tissue changes without GBCAs, but they are not commonly used in clinical practice due to the need for specifically targeted sequences.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
Anal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!