A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inductive Multi-Hypergraph Learning and Its Application on View-Based 3D Object Classification. | LitMetric

The wide 3D applications have led to increasing amount of 3D object data, and thus effective 3D object classification technique has become an urgent requirement. One important and challenging task for 3D object classification is how to formulate the 3D data correlation and exploit it. Most of the previous works focus on learning optimal pairwise distance metric for object comparison, which may lose the global correlation among 3D objects. Recently, a transductive hypergraph learning has been investigated for classification, which can jointly explore the correlation among multiple objects, including both the labeled and unlabeled data. Although these methods have shown better performance, they are still limited due to 1) a considerable amount of testing data may not be available in practice and 2) the high computational cost to test new coming data. To handle this problem, considering the multi-modal representations of 3D objects in practice, we propose an inductive multi-hypergraph learning algorithm, which targets on learning an optimal projection for the multi-modal training data. In this method, all the training data are formulated in multi-hypergraph based on the features, and the inductive learning is conducted to learn the projection matrices and the optimal multi-hypergraph combination weights simultaneously. Different from the transductive learning on hypergraph, the high cost training process is off-line, and the testing process is very efficient for the inductive learning on hypergraph. We have conducted experiments on two 3D benchmarks, i.e., the NTU and the ModelNet40 data sets, and compared the proposed algorithm with the state-of-the-art methods and traditional transductive multi-hypergraph learning methods. Experimental results have demonstrated that the proposed method can achieve effective and efficient classification performance. We also note that the proposed method is a general framework and has the potential to be applied in other applications in practice.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2018.2862625DOI Listing

Publication Analysis

Top Keywords

multi-hypergraph learning
12
object classification
12
learning
9
inductive multi-hypergraph
8
data
8
learning optimal
8
training data
8
inductive learning
8
learning hypergraph
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!