Machine learning models are susceptible to adversarial perturbations: small changes to input that can cause large changes in output. It is also demonstrated that there exist input-agnostic perturbations, called universal adversarial perturbations, which can change the inference of target model on most of the data samples. However, existing methods to craft universal perturbations are (i) task specific, (ii) require samples from the training data distribution, and (iii) perform complex optimizations. Additionally, because of the data dependence, fooling ability of the crafted perturbations is proportional to the available training data. In this paper, we present a novel, generalizable and data-free approach for crafting universal adversarial perturbations. Independent of the underlying task, our objective achieves fooling via corrupting the extracted features at multiple layers. Therefore, the proposed objective is generalizable to craft image-agnostic perturbations across multiple vision tasks such as object recognition, semantic segmentation, and depth estimation. In the practical setting of black-box attack scenario (when the attacker does not have access to the target model and it's training data), we show that our objective outperforms the data dependent objectives to fool the learned models. Further, via exploiting simple priors related to the data distribution, our objective remarkably boosts the fooling ability of the crafted perturbations. Significant fooling rates achieved by our objective emphasize that the current deep learning models are now at an increased risk, since our objective generalizes across multiple tasks without the requirement of training data for crafting the perturbations. To encourage reproducible research, we have released the codes for our proposed algorithm.1.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2018.2861800DOI Listing

Publication Analysis

Top Keywords

adversarial perturbations
16
training data
16
universal adversarial
12
perturbations
10
generalizable data-free
8
crafting universal
8
learning models
8
target model
8
data
8
data distribution
8

Similar Publications

Contrastive Graph Representation Learning with Adversarial Cross-View Reconstruction and Information Bottleneck.

Neural Netw

January 2025

School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

Graph Neural Networks (GNNs) have received extensive research attention due to their powerful information aggregation capabilities. Despite the success of GNNs, most of them suffer from the popularity bias issue in a graph caused by a small number of popular categories. Additionally, real graph datasets always contain incorrect node labels, which hinders GNNs from learning effective node representations.

View Article and Find Full Text PDF

Improving the Robustness of Deep-Learning Models in Predicting Hematoma Expansion from Admission Head CT.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (A.T.T., D.Z., D.K., S. Payabvash) and Neurology (S. Park), NewYork-Presbyterian/Columbia University Irving Medical Center, Columbia University, New York, NY; Department of Radiology and Biomedical Imaging (G.A., A.M.) and Neurology (G.J.F., K.N.S.), Yale School of Medicine, New Haven, CT; Zeenat Qureshi Stroke Institute and Department of Neurology (A.I.Q.), University of Missouri, Columbia, MO; Department of Neurosurgery (S.M.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; and Department of Neurology (S.B.M.), Weill Cornell Medical College, Cornell University, New York, NY.

Background And Purpose: Robustness against input data perturbations is essential for deploying deep-learning models in clinical practice. Adversarial attacks involve subtle, voxel-level manipulations of scans to increase deep-learning models' prediction errors. Testing deep-learning model performance on examples of adversarial images provides a measure of robustness, and including adversarial images in the training set can improve the model's robustness.

View Article and Find Full Text PDF

Learning with noisy labels via clean aware sharpness aware minimization.

Sci Rep

January 2025

School of Mechanical, Electrical, and Information Engineering, Putian University, Putian, 351100, China.

Noise label learning has attracted considerable attention owing to its ability to leverage large amounts of inexpensive and imprecise data. Sharpness aware minimization (SAM) has shown effective improvements in the generalization performance in the presence of noisy labels by introducing adversarial weight perturbations in the model parameter space. However, our experimental observations have shown that the SAM generalization bottleneck primarily stems from the difficulty of finding the correct adversarial perturbation amidst the noisy data.

View Article and Find Full Text PDF

Decorrelative network architecture for robust electrocardiogram classification.

Patterns (N Y)

December 2024

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

To achieve adequate trust in patient-critical medical tasks, artificial intelligence must be able to recognize instances where they cannot operate confidently. Ensemble methods are deployed to estimate uncertainty, but models in an ensemble often share the same vulnerabilities to adversarial attacks. We propose an ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse features, reducing the chance of perturbation-based fooling.

View Article and Find Full Text PDF

Adversarial training has become a primary method for enhancing the robustness of deep learning models. In recent years, fast adversarial training methods have gained widespread attention due to their lower computational cost. However, since fast adversarial training uses single-step adversarial attacks instead of multi-step attacks, the generated adversarial examples lack diversity, making models prone to catastrophic overfitting and loss of robustness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!