Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the last years, interest in epigenetic mechanisms has strongly increased in the field of neuroscience. Neuroepigenetics has intensely evolved and now refers to the assessment of a variety of epigenetic marks which can be found across several regions of the healthy or diseased brain. These marks include DNA (hydroxy)methylation, a large diversity of post-translational histone modifications and an increasing number of non-coding RNAs. The present chapter aims to concisely summarize the techniques used to study these mechanisms in the brain and provides an overview of their current challenges along with future perspectives that will allow the field to move forward.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pmbts.2018.04.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!