Terahertz coded-aperture imaging (TCAI) can overcome the difficulties of traditional radar in forward-looking and high-resolution imaging. Three-dimensional (3D) TCAI relies mainly on the reference-signal matrix (RSM), the large size and poor accuracy of which reduce the computational efficiency and imaging ability, respectively. According to the previous research on TCAI, traditional TCAI cannot reduce the heavy computational burden while the improved TCAI achieve reconstructing the target parts of different ranges in parallel. However, large-sized RSM still accounts for the computational complexity of traditional TCAI and the improved TCAI. Therefore, this paper proposes a more efficient imaging method named back projection (BP)-TCAI (BP-TCAI). Referring to the basic principle of BP, BP-TCAI can not only divide the scattering information in different ranges but also project the range profiles into different imaging subareas. In this way, the target parts in different subareas can be reconstructed simultaneously to synthesize the whole 3D target and thus decomposes the computational complexity thoroughly. During the pulse compression and projection processes, the signal-to-noise ratio (SNR) of BP-TCAI is also improved. This present the imaging method, model and procedures of traditional TCAI, the improved TCAI and the proposed BP-TCAI. Numerical experimental results prove BP-TCAI to be more effective and efficient than previous imaging methods of TCAI. Besides, BP-TCAI can also be seen as synthetic aperture radar (SAR) imaging with coding technology. Therefore, BP-TCAI opens a future gate combining traditional SAR and coded-aperture imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111925 | PMC |
http://dx.doi.org/10.3390/s18082510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!