Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, energy-efficient data collection has evolved into the core problem in the resource-constrained Wireless Sensor Networks (WSNs). Different from existing data collection models in WSNs, we propose a collaborative data collection scheme based on optimal clustering to collect the sensed data in an energy-efficient and load-balanced manner. After dividing the data collection process into the intra-cluster data collection step and the inter-cluster data collection step, we model the optimal clustering problem as a separable convex optimization problem and solve it to obtain the analytical solutions of the optimal clustering size and the optimal data transmission radius. Then, we design a Cluster Heads (CHs)-linking algorithm based on the pseudo Hilbert curve to build a CH chain with the goal of collecting the compressed sensed data among CHs in an accumulative way. Furthermore, we also design a distributed cluster-constructing algorithm to construct the clusters around the virtual CHs in a distributed manner. The experimental results show that the proposed method not only reduces the total energy consumption and prolongs the network lifetime, but also effectively balances the distribution of energy consumption among CHs. By comparing it o the existing compression-based and non-compression-based data collection schemes, the average reductions of energy consumption are 17.9% and 67.9%, respectively. Furthermore, the average network lifetime extends no less than 20-times under the same comparison.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111701 | PMC |
http://dx.doi.org/10.3390/s18082487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!