A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial communities and functional genes of nitrogen cycling in an electrolysis augmented constructed wetland treating wastewater treatment plant effluent. | LitMetric

Microbial communities and functional genes of nitrogen cycling in an electrolysis augmented constructed wetland treating wastewater treatment plant effluent.

Chemosphere

School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing, 210023, China. Electronic address:

Published: November 2018

To enhance nitrogen removal efficiency, a new electrolysis augmented constructed wetland (E-CW) was applied for nitrogen removal from waste water treatment plant (WWTP) effluent. This work demonstrated that E-CW could remove NO efficiently (45.5%-83.4%) under low C/N ratio (average 2.29 ± 0.45) with little amount of NH and NO generation. High throughput 16S rRNA sequence analysis revealed that Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, and Verrucomicrobia were the dominant phyla in the E-CW. However, abundance of denitrifiers and denitrification genes decreased along with the operation of E-CW. Four functional gene pairs of anammox-amoA, (narG + napA)-(nirK + nirS), (narG + napA)-nosZ and qnorB-nosZ showed positive correlations with each other. Co-occurrence network analysis results indicated that functional guilds of FeOB and FeRB coupled with denitrifiers and contributed to the process of nitrogen removal in the E-CW. Overall, this work illustrated E-CW was a feasible and effective technology for enhancing nitrogen removal, and provided a theoretical basis for better design and operation of E-CW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.067DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
16
electrolysis augmented
8
augmented constructed
8
constructed wetland
8
treatment plant
8
operation e-cw
8
e-cw
7
nitrogen
5
microbial communities
4
communities functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!