The role of post harvesting procedures for producing parboiled rice grain using arsenic (As) contaminated groundwater in rural Bengal was investigated. Considerable high concentrations of As (mean: 186 μg/kg) were found in about 82% of parboiled rice grain samples compared to raw or non-parboiled rice grain samples (66 μg/kg in 75% samples) obtained from Deganga, a highly As affected zone located in West Bengal, India. This observation instigated to study the additional entry of As at various stages of parboiling. A maximum increase of 205% of As content in parboiled rice grain was observed. Significant increase in parboiled whole grain As concentration was dependent upon the large difference between As concentrations of the water and the raw whole grain used for parboiling. Arsenic concentrations of water samples collected at raw, half boiled and full boiled stages of parboiling increased, irrespective of their initial concentration due to reduction in final volume during parboiling process. Principle component analysis shows a positive correlation of As concentration of rice grain to that in the groundwater being used in post harvesting procedure. Moreover, partitioning studies of As in whole grain indicated higher accumulation of As content in individual rice grain than that in their respective husks implying higher risk of exposure on ingestion of these contaminated rice grains. It is therefore, suggested to employ novel methods such as rain water harvesting or surface water channelling to make As free water available for parboiling process to curtail the entry of additional As in parboiled rice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.128DOI Listing

Publication Analysis

Top Keywords

rice grain
24
parboiled rice
16
post harvesting
12
grain
10
arsenic contaminated
8
contaminated groundwater
8
west bengal
8
parboiled grain
8
rice
8
grain samples
8

Similar Publications

Unlabelled: Black rice has a long history of cultivation in Asia especially China. As a whole grain, black rice is rich in diverse nutrients including proteins, vitamins, amino acids, minerals, unsaturated fatty acids, dietary fibers, alkaloids, carotenes, phenolic compounds, and anthocyanins, in addition to starch. Many studies have demonstrated a range of health-promoting effects by black rice, which has greatly attracted the attention of consumers.

View Article and Find Full Text PDF

Antiproliferative and antioxidant properties of protein-free and protein-bound phenolics isolated from purple Rice (Oryza sativa L.).

Int J Biol Macromol

December 2024

National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:

Purple rice (Oryza sativa L.) is a rich in endogenous phenolics and proteins. The naturally occurring interactions between phenolic compounds and proteins have been shown to have beneficial effects on human health.

View Article and Find Full Text PDF

Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems.

View Article and Find Full Text PDF

Attenuated cadmium and arsenic enrichment in rice by co-application of organic composting and chemical fertilization.

Sci Rep

December 2024

College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.

A pot experiment was conducted on arsenic (As) and cadmium (Cd) co-contaminated soil to discern the influence of varying proportions of pig manure compost (PM) vis-à-vis chemical fertilizers (NPK) on the mitigation of Cd and As absorption by rice. Our findings illustrated that by increasing the PM proportions from 25 to 100%, it manifested a statistically significant reduction in the mobilized fractions of Cd, accounting for up to 77% reduction in soil CaCl-Cd concentrations. Conversely, the NaHCO-As reactions were contingent on the distinct PM application rates.

View Article and Find Full Text PDF

Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice ( L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!