Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Suitable pretreatment can effectively enhance the fermentative hydrogen production from algae biomass. In this study, combined microwave-acid pretreatment was applied to disintegrate the biomass of macroalgae L. japonica, and dark fermentation in batch mode was conducted for hydrogen production. The results showed that combining microwave pretreatment at 140 °C and 2450 MHz with 1% HSO for 15 min could effectively disrupt macroalgal cells and release the organic matters, and soluble chemical oxygen demand (SCOD) concentration increased by 1.92-fold and achieved 5.12 g/L. During the fermentation process, both polysaccharides and proteins were consumed. Hydrogen production process was dominated by acetate-type fermentation, and the dominance of genus Clostridium contributed to more efficient hydrogen production. After the pretreatment, hydrogen yield increased from 15 mL/g TS to 28 mL/g TS, and energy conversion efficiency increased from 9.5% to 23.8%. Combined microwave-acid pretreatment is potential in enhancing hydrogen production from the biomass of L. japonica.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.07.126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!