An anoxic/oxic membrane bioreactor (MBR) and three side-stream reactor (SSR) coupled membrane bioreactors were operated in parallel to investigate effects of dissolved oxygen (DO) level in SSR on sludge reduction and microbial community structure of SSR-MBRs. The four MBRs were equally efficient in COD and ammonium nitrogen removal. The anaerobic and micro-aerobic SSR favored nitrogen removal through denitrification, simultaneous nitrification and denitrification and autochthonous substrate release as carbon source. The micro-aerobic SSR achieved greatly higher sludge reduction efficiency (61.1%) than anaerobic (37.3%) and aerobic SSR (7.9%). Micro-aerobic SSR obtained the highest endogenous decay constant (0.035 d) compared to anaerobic (0.023 d) and aerobic SSR (0.015 d). High-throughput sequencing results revealed that anaerobic SSR enriched hydrolytic and fermentative bacteria, aerobic environment favored the growth of slow-growing bacteria, and micro-aerobic SSR stimulated biological activities of both anaerobic and aerobic bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.07.097DOI Listing

Publication Analysis

Top Keywords

micro-aerobic ssr
16
sludge reduction
12
ssr
9
reduction microbial
8
side-stream reactor
8
coupled membrane
8
membrane bioreactors
8
nitrogen removal
8
aerobic ssr
8
anaerobic
6

Similar Publications

Enhanced in-situ sludge reduction of the side-stream process via employing micro-aerobic approach in both mainstream and side-stream.

Bioresour Technol

June 2023

State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.

View Article and Find Full Text PDF

An anoxic/oxic membrane bioreactor (MBR) and three side-stream reactor (SSR) coupled membrane bioreactors were operated in parallel to investigate effects of dissolved oxygen (DO) level in SSR on sludge reduction and microbial community structure of SSR-MBRs. The four MBRs were equally efficient in COD and ammonium nitrogen removal. The anaerobic and micro-aerobic SSR favored nitrogen removal through denitrification, simultaneous nitrification and denitrification and autochthonous substrate release as carbon source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!