An anoxic/oxic membrane bioreactor (MBR) and three side-stream reactor (SSR) coupled membrane bioreactors were operated in parallel to investigate effects of dissolved oxygen (DO) level in SSR on sludge reduction and microbial community structure of SSR-MBRs. The four MBRs were equally efficient in COD and ammonium nitrogen removal. The anaerobic and micro-aerobic SSR favored nitrogen removal through denitrification, simultaneous nitrification and denitrification and autochthonous substrate release as carbon source. The micro-aerobic SSR achieved greatly higher sludge reduction efficiency (61.1%) than anaerobic (37.3%) and aerobic SSR (7.9%). Micro-aerobic SSR obtained the highest endogenous decay constant (0.035 d) compared to anaerobic (0.023 d) and aerobic SSR (0.015 d). High-throughput sequencing results revealed that anaerobic SSR enriched hydrolytic and fermentative bacteria, aerobic environment favored the growth of slow-growing bacteria, and micro-aerobic SSR stimulated biological activities of both anaerobic and aerobic bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.07.097 | DOI Listing |
Bioresour Technol
June 2023
State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.
View Article and Find Full Text PDFBioresour Technol
November 2018
Shanghai Chentou Wastewater Treatment Co., Ltd, Shanghai 201203, China.
An anoxic/oxic membrane bioreactor (MBR) and three side-stream reactor (SSR) coupled membrane bioreactors were operated in parallel to investigate effects of dissolved oxygen (DO) level in SSR on sludge reduction and microbial community structure of SSR-MBRs. The four MBRs were equally efficient in COD and ammonium nitrogen removal. The anaerobic and micro-aerobic SSR favored nitrogen removal through denitrification, simultaneous nitrification and denitrification and autochthonous substrate release as carbon source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!