Nanointegrated, High-Performing Cobalt-Free Bismuth-Based Composite Cathode for Low-Temperature Solid Oxide Fuel Cells.

ACS Appl Mater Interfaces

Maryland Energy Innovation Institute and Department of Materials Science & Engineering , University of Maryland , College Park, Maryland 20742 , United States.

Published: August 2018

Cost-effective cathodes that actively catalyze the oxygen reduction reaction (ORR) are one of the major challenges for the technological advancement of low-temperature solid oxide fuel cells (LT-SOFCs). In particular, cobalt has been an essential element in electrocatalysts for efficiently catalyzing the ORR; nevertheless, the cost, safety, and stability issues of cobalt in cathode materials remain a severe drawback for SOFC development. Here, we demonstrated that by appropriate nanoengineering, we can overcome the inherent electrocatalytic advantages of cobalt-based cathodes to achieve comparable performance with a cobalt-free electrocatalyst on a bismuth-based fast oxygen ion-conducting scaffold that simultaneously enhances the performance and stability of LT-SOFCs. Consequently, the peak power density of the SOFCs reaches 1.2 W/cm at 600 °C, highest performance of a cobalt-free-based cathode that has been ever reported. In addition, by the surface-protecting effect of covered nanoelectrocatalysts, the evaporation of highly volatile bismuth is greatly suppressed, resulting in an 80% improvement in performance durability, the best among all reported bismuth-based fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b08911DOI Listing

Publication Analysis

Top Keywords

fuel cells
12
low-temperature solid
8
solid oxide
8
oxide fuel
8
nanointegrated high-performing
4
high-performing cobalt-free
4
cobalt-free bismuth-based
4
bismuth-based composite
4
composite cathode
4
cathode low-temperature
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!